In the alpha release of CloudML's online prediction service, the format for exporting model was:
inputs = {"x": x, "y_bytes": y}
g.add_to_collection("inputs", json.dumps(inputs))
outputs = {"a": a, "b_bytes": b}
g.add_to_collection("outputs", json.dumps(outputs))
I would like to convert this to a SavedModel without retraining my model. How can I do that?
We can convert this to a SavedModel by importing the old model, creating the Signatures, and re-exporting it. This code is untested, but something like this should work: