Storing a Variable with a Multi-Dimensional Index

2019-02-20 03:59发布

Question

Consider the following code:

program example

  implicit none

  integer, parameter :: n_coeffs = 1000
  integer, parameter :: n_indices = 5
  integer :: i
  real(8), dimension(n_coeffs) :: coeff
  integer, dimension(n_coeffs,n_indices) :: index

  do i = 1, n_coeffs
    coeff(i)   = real(i*3,8)
    index(i,:) = [2,4,8,16,32]*i
  end do

end

For any 5 dimensional index I need to obtain the associated coefficient, without knowing or calculating i. For instance, given [2,4,8,16,32] I need to obtain 3.0 without computing i.

Is there a reasonable solution, perhaps using sparse matrices, that would work for n_indices in the order of 100 (though n_coeffs still in the order of 1000)?


A Bad Solution

One solution would be to define a 5 dimensional array as in

real(8), dimension(2000,4000,8000,16000,32000) :: coeff2

do i = 1, ncoeffs
    coeff2(index(i,1),index(i,2),index(i,3),index(i,4),index(i,5)) = coeff(i)
end do

then, to get the coefficient associated with [2,4,8,16,32], call

coeff2(2,4,8,16,32)

However, besides being very wasteful of memory, this solution would not allow n_indices to be set to a number higher than 7 given the limit of 7 dimensions to an array.


OBS: This question is a spin-off of this one. I have tried to ask the question more precisely having failed in the first attempt, an effort that greatly benefited from the answer of @Rodrigo_Rodrigues.


Actual Code

In case it helps here is the code for the actual problem I am trying to solve. It is an adaptive sparse grid method for approximating a function. The main goal is to make the interpolation at the and as fast as possible:

MODULE MOD_PARAMETERS

    IMPLICIT NONE
    SAVE

    INTEGER, PARAMETER :: d     = 2     ! number of dimensions
    INTEGER, PARAMETER :: L_0   = 4     ! after this adaptive grid kicks in, for L <= L_0 usual sparse grid
    INTEGER, PARAMETER :: L_max = 9    ! maximum level
    INTEGER, PARAMETER :: bound = 0     ! 0 -> for f = 0 at boundary
                                        ! 1 -> adding grid points at boundary
                                        ! 2 -> extrapolating close to boundary
    INTEGER, PARAMETER :: max_error = 1
    INTEGER, PARAMETER :: L2_error  = 1
    INTEGER, PARAMETER :: testing_sample = 1000000

    REAL(8), PARAMETER :: eps = 0.01D0   ! epsilon for adaptive grid

END MODULE MOD_PARAMETERS

PROGRAM MAIN

USE MOD_PARAMETERS
IMPLICIT NONE

INTEGER, DIMENSION(d,d)                :: ident
REAL(8), DIMENSION(d)                  :: xd
INTEGER, DIMENSION(2*d)                :: temp
INTEGER, DIMENSION(:,:),   ALLOCATABLE :: grid_index, temp_grid_index, grid_index_new, J_index
REAL(8), DIMENSION(:),     ALLOCATABLE :: coeff, temp_coeff, J_coeff

REAL(8) :: temp_min, temp_max, V, T, B, F, x1
INTEGER :: k, k_1, k_2, h, i, j, L, n, dd, L1, L2, dsize, count, first, repeated, add, ind

INTEGER :: time1, time2, clock_rate, clock_max

REAL(8), DIMENSION(L_max,L_max,2**(L_max),2**(L_max)) :: coeff_grid
INTEGER, DIMENSION(d) :: level, LL, ii

REAL(8), DIMENSION(testing_sample,d) :: x_rand
REAL(8), DIMENSION(testing_sample)   :: interp1, interp2

! ============================================================================
! EXECUTABLE
! ============================================================================

ident = 0
DO i = 1,d
    ident(i,i) = 1
ENDDO

! Initial grid point
dsize = 1
ALLOCATE(grid_index(dsize,2*d),grid_index_new(dsize,2*d))
grid_index(1,:) = 1
grid_index_new  = grid_index

ALLOCATE(coeff(dsize))
xd = (/ 0.5D0, 0.5D0 /)
CALL FF(xd,coeff(1))
CALL FF(xd,coeff_grid(1,1,1,1))

L = 1
n = SIZE(grid_index_new,1)
ALLOCATE(J_index(n*2*d,2*d))
ALLOCATE(J_coeff(n*2*d))

CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)

DO WHILE (L .LT. L_max)

    L       = L+1
    n       = SIZE(grid_index_new,1)
    count   = 0
    first   = 1
    DEALLOCATE(J_index,J_coeff)
    ALLOCATE(J_index(n*2*d,2*d))
    ALLOCATE(J_coeff(n*2*d))
    J_index = 0
    J_coeff = 0.0D0
    DO k = 1,n
        DO i = 1,d
            DO j = 1,2
                IF ((bound .EQ. 0) .OR. (bound .EQ. 2)) THEN
                    temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
                ELSEIF (bound .EQ. 1) THEN
                    IF (grid_index_new(k,i) .EQ. 1) THEN
                        temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(-(-1)**j)/)
                    ELSE
                        temp = grid_index_new(k,:)+(/ident(i,:),ident(i,:)*(grid_index_new(k,d+i)-(-1)**j)/)
                    ENDIF
                ENDIF
                CALL XX(d,temp(1:d),temp(d+1:2*d),xd)
                temp_min = MINVAL(xd)
                temp_max = MAXVAL(xd)
                IF ((temp_min .GE. 0.0D0) .AND. (temp_max .LE. 1.0D0)) THEN
                    IF (first .EQ. 1) THEN
                        first = 0
                        count = count+1
                        J_index(count,:) = temp
                        V = 0.0D0
                        DO k_1 = 1,SIZE(grid_index,1)
                            T = 1.0D0
                            DO k_2 = 1,d
                                CALL XX(1,temp(k_2),temp(d+k_2),x1)
                                CALL BASE(x1,grid_index(k_1,k_2),grid_index(k_1,k_2+d),B)
                                T = T*B
                            ENDDO
                            V = V+coeff(k_1)*T
                        ENDDO
                        CALL FF(xd,F)
                        J_coeff(count) = F-V
                    ELSE
                        repeated = 0
                        DO h = 1,count
                            IF (SUM(ABS(J_index(h,:)-temp)) .EQ. 0) THEN
                                repeated = 1
                            ENDIF
                        ENDDO
                        IF (repeated .EQ. 0) THEN
                            count = count+1
                            J_index(count,:) = temp
                            V = 0.0D0
                            DO k_1 = 1,SIZE(grid_index,1)
                                T = 1.0D0
                                DO k_2 = 1,d
                                    CALL XX(1,temp(k_2),temp(d+k_2),x1)
                                    CALL BASE(x1,grid_index(k_1,k_2),grid_index(k_1,k_2+d),B)
                                    T = T*B
                                ENDDO
                                V = V+coeff(k_1)*T
                            ENDDO
                            CALL FF(xd,F)
                            J_coeff(count) = F-V
                        ENDIF
                    ENDIF
                ENDIF
            ENDDO
        ENDDO
    ENDDO

    ALLOCATE(temp_grid_index(dsize,2*d))
    ALLOCATE(temp_coeff(dsize))
    temp_grid_index = grid_index
    temp_coeff      = coeff
    DEALLOCATE(grid_index,coeff)
    ALLOCATE(grid_index(dsize+count,2*d))
    ALLOCATE(coeff(dsize+count))
    grid_index(1:dsize,:) = temp_grid_index
    coeff(1:dsize)        = temp_coeff
    DEALLOCATE(temp_grid_index,temp_coeff)
    grid_index(dsize+1:dsize+count,:) = J_index(1:count,:)
    coeff(dsize+1:dsize+count)        = J_coeff(1:count)
    dsize = dsize + count    

    DO i = 1,count
        coeff_grid(J_index(i,1),J_index(i,2),J_index(i,3),J_index(i,4)) = J_coeff(i)
    ENDDO

    IF (L .LE. L_0) THEN
        DEALLOCATE(grid_index_new)
        ALLOCATE(grid_index_new(count,2*d))
        grid_index_new = J_index(1:count,:)
    ELSE
        add = 0
        DO h = 1,count
            IF (ABS(J_coeff(h)) .GT. eps) THEN
                add = add + 1
                J_index(add,:) = J_index(h,:)
            ENDIF
        ENDDO
        DEALLOCATE(grid_index_new)
        ALLOCATE(grid_index_new(add,2*d))
        grid_index_new = J_index(1:add,:)
    ENDIF

ENDDO

CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, 'Elapsed real time1 = ', DBLE(time2-time1)/DBLE(clock_rate)
PRINT *, 'Grid Points        = ', SIZE(grid_index,1)

! ============================================================================
! Compute interpolated values:
! ============================================================================

CALL RANDOM_NUMBER(x_rand)
CALL SYSTEM_CLOCK (time1,clock_rate,clock_max)
DO i = 1,testing_sample
    V = 0.0D0
    DO L1=1,L_max
        DO L2=1,L_max
            IF (L1+L2 .LE. L_max+1) THEN
                level = (/L1,L2/)
                T = 1.0D0
                DO dd = 1,d
                    T = T*(1.0D0-ABS(x_rand(i,dd)/2.0D0**(-DBLE(level(dd)))-DBLE(2*FLOOR(x_rand(i,dd)*2.0D0**DBLE(level(dd)-1))+1)))
                ENDDO
                V = V + coeff_grid(L1,L2,2*FLOOR(x_rand(i,1)*2.0D0**DBLE(L1-1))+1,2*FLOOR(x_rand(i,2)*2.0D0**DBLE(L2-1))+1)*T
            ENDIF
        ENDDO
    ENDDO
    interp2(i) = V
ENDDO
CALL SYSTEM_CLOCK (time2,clock_rate,clock_max)
PRINT *, 'Elapsed real time2 = ', DBLE(time2-time1)/DBLE(clock_rate)

END PROGRAM

1条回答
Deceive 欺骗
2楼-- · 2019-02-20 04:56

For any 5 dimensional index I need to obtain the associated coefficient, without knowing or calculating i. For instance, given [2,4,8,16,32] I need to obtain 3.0 without computing i.

  function findloc_vector(matrix, vector) result(out)
    integer, intent(in) :: matrix(:, :)
    integer, intent(in) :: vector(size(matrix, dim=2))
    integer :: out, i

    do i = 1, size(matrix, dim=1)
      if (all(matrix(i, :) == vector)) then
        out = i
        return
      end if
    end do
    stop "No match for this vector"
  end

And that's how you use it:

print*, coeff(findloc_vector(index, [2,4,8,16,32])) ! outputs 3.0

I must confess I was reluctant to post this code because, even though this answers your question, I honestly think this is not what you really want/need, but you dind't provide enough information for me to know what you really do want/need.

Edit (After actual code from OP):

If I decrypted your code correctly (and considering what you said in your previous question), you are declaring:

REAL(8), DIMENSION(L_max,L_max,2**(L_max),2**(L_max)) :: coeff_grid

(where L_max = 9, so size(coeff_grid) = 21233664 =~160MB) and then populating it with:

DO i = 1,count
    coeff_grid(J_index(i,1),J_index(i,2),J_index(i,3),J_index(i,4)) = J_coeff(i)
ENDDO

(where count is of the order of 1000, i.e. 0.005% of its elements), so this way you can fetch the values by its 4 indices with the array notation.

Please, don't do that. You don't need a sparse matrix in this case either. The new approach you proposed is much better: storing the indices in each row of an smaller array, and fetching on the array of coefficients by the corresponding location of those indices in its own array. This is way faster (avoiding the large allocation) and much more memory-efficient.

PS: Is it mandatory for you to stick to Fortran 90? Its a very old version of the standard and chances are that the compiler you're using implements a more recent version. You could improve the quality of your code a lot with the intrinsic move_alloc (for less array copies), the kind constants from the intrinsic module iso_fortran_env (for portability), the [], >, <, <=,... notation (for readability)...

查看更多
登录 后发表回答