Shuffle a numpy array

2019-02-16 14:21发布

I have a 2-d numpy array that I would like to shuffle. Is the best way to reshape it to 1-d, shuffle and reshape again to 2-d or is it possible to shuffle without reshaping?

just using the random.shuffle doesn't yield expected results and numpy.random.shuffle shuffles only rows:

import random
import numpy as np
a=np.arange(9).reshape((3,3))
random.shuffle(a)
print a

[[0 1 2]
 [3 4 5]
 [3 4 5]]

a=np.arange(9).reshape((3,3))
np.random.shuffle(a)
print a

[[6 7 8]
 [3 4 5]
 [0 1 2]]

3条回答
别忘想泡老子
2楼-- · 2019-02-16 14:38

You can tell np.random.shuffle to act on the flattened version:

>>> a = np.arange(9).reshape((3,3))
>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> np.random.shuffle(a.flat)
>>> a
array([[3, 5, 8],
       [7, 6, 2],
       [1, 4, 0]])
查看更多
冷血范
3楼-- · 2019-02-16 14:39

You could shuffle a.flat:

>>> np.random.shuffle(a.flat)
>>> a
array([[6, 1, 2],
       [3, 5, 0],
       [7, 8, 4]])
查看更多
ら.Afraid
4楼-- · 2019-02-16 14:49

I think this is very important to note.
You can use random.shuffle(a) if a is 1-D numpy array. If it is N-D (where N > 2) than

random.shuffle(a)

will spoil your data and return some random thing. As you can see here:

import random
import numpy as np
a=np.arange(9).reshape((3,3))
random.shuffle(a)
print a

[[0 1 2]
 [3 4 5]
 [3 4 5]]

This is a known bug (or feature?) of numpy.

So, use only numpy.random.shuffle(a) for numpy arrays.

查看更多
登录 后发表回答