Reading binary file and looping over each byte

2018-12-31 05:04发布

In Python, how do I read in a binary file and loop over each byte of that file?

9条回答
冷夜・残月
2楼-- · 2018-12-31 05:39

This generator yields bytes from a file, reading the file in chunks:

def bytes_from_file(filename, chunksize=8192):
    with open(filename, "rb") as f:
        while True:
            chunk = f.read(chunksize)
            if chunk:
                for b in chunk:
                    yield b
            else:
                break

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)

See the Python documentation for information on iterators and generators.

查看更多
梦该遗忘
3楼-- · 2018-12-31 05:41

Python 2.4 and Earlier

f = open("myfile", "rb")
try:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)
finally:
    f.close()

Python 2.5-2.7

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != "":
        # Do stuff with byte.
        byte = f.read(1)

Note that the with statement is not available in versions of Python below 2.5. To use it in v 2.5 you'll need to import it:

from __future__ import with_statement

In 2.6 this is not needed.

Python 3

In Python 3, it's a bit different. We will no longer get raw characters from the stream in byte mode but byte objects, thus we need to alter the condition:

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte != b"":
        # Do stuff with byte.
        byte = f.read(1)

Or as benhoyt says, skip the not equal and take advantage of the fact that b"" evaluates to false. This makes the code compatible between 2.6 and 3.x without any changes. It would also save you from changing the condition if you go from byte mode to text or the reverse.

with open("myfile", "rb") as f:
    byte = f.read(1)
    while byte:
        # Do stuff with byte.
        byte = f.read(1)
查看更多
只若初见
4楼-- · 2018-12-31 05:41

If you have a lot of binary data to read, you might want to consider the struct module. It is documented as converting "between C and Python types", but of course, bytes are bytes, and whether those were created as C types does not matter. For example, if your binary data contains two 2-byte integers and one 4-byte integer, you can read them as follows (example taken from struct documentation):

>>> struct.unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)

You might find this more convenient, faster, or both, than explicitly looping over the content of a file.

查看更多
浅入江南
5楼-- · 2018-12-31 05:42

Reading binary file in Python and looping over each byte

New in Python 3.5 is the pathlib module, which has a convenience method specifically to read in a file as bytes, allowing us to iterate over the bytes. I consider this a decent (if quick and dirty) answer:

import pathlib

for byte in pathlib.Path(path).read_bytes():
    print(byte)

Interesting that this is the only answer to mention pathlib.

In Python 2, you probably would do this (as Vinay Sajip also suggests):

with open(path, 'b') as file:
    for byte in file.read():
        print(byte)

In the case that the file may be too large to iterate over in-memory, you would chunk it, idiomatically, using the iter function with the callable, sentinel signature - the Python 2 version:

with open(path, 'b') as file:
    callable = lambda: file.read(1024)
    sentinel = bytes() # or b''
    for chunk in iter(callable, sentinel): 
        for byte in chunk:
            print(byte)

(Several other answers mention this, but few offer a sensible read size.)

Best practice for large files or buffered/interactive reading

Let's create a function to do this, including idiomatic uses of the standard library for Python 3.5+:

from pathlib import Path
from functools import partial
from io import DEFAULT_BUFFER_SIZE

def file_byte_iterator(path):
    """given a path, return an iterator over the file
    that lazily loads the file
    """
    path = Path(path)
    with path.open('rb') as file:
        reader = partial(file.read1, DEFAULT_BUFFER_SIZE)
        file_iterator = iter(reader, bytes())
        for chunk in file_iterator:
            for byte in chunk:
                yield byte

Note that we use file.read1. file.read blocks until it gets all the bytes requested of it or EOF. file.read1 allows us to avoid blocking, and it can return more quickly because of this. No other answers mention this as well.

Demonstration of best practice usage:

Let's make a file with a megabyte (actually mebibyte) of pseudorandom data:

import random
import pathlib
path = 'pseudorandom_bytes'
pathobj = pathlib.Path(path)

pathobj.write_bytes(
  bytes(random.randint(0, 255) for _ in range(2**20)))

Now let's iterate over it and materialize it in memory:

>>> l = list(file_byte_iterator(path))
>>> len(l)
1048576

We can inspect any part of the data, for example, the last 100 and first 100 bytes:

>>> l[-100:]
[208, 5, 156, 186, 58, 107, 24, 12, 75, 15, 1, 252, 216, 183, 235, 6, 136, 50, 222, 218, 7, 65, 234, 129, 240, 195, 165, 215, 245, 201, 222, 95, 87, 71, 232, 235, 36, 224, 190, 185, 12, 40, 131, 54, 79, 93, 210, 6, 154, 184, 82, 222, 80, 141, 117, 110, 254, 82, 29, 166, 91, 42, 232, 72, 231, 235, 33, 180, 238, 29, 61, 250, 38, 86, 120, 38, 49, 141, 17, 190, 191, 107, 95, 223, 222, 162, 116, 153, 232, 85, 100, 97, 41, 61, 219, 233, 237, 55, 246, 181]
>>> l[:100]
[28, 172, 79, 126, 36, 99, 103, 191, 146, 225, 24, 48, 113, 187, 48, 185, 31, 142, 216, 187, 27, 146, 215, 61, 111, 218, 171, 4, 160, 250, 110, 51, 128, 106, 3, 10, 116, 123, 128, 31, 73, 152, 58, 49, 184, 223, 17, 176, 166, 195, 6, 35, 206, 206, 39, 231, 89, 249, 21, 112, 168, 4, 88, 169, 215, 132, 255, 168, 129, 127, 60, 252, 244, 160, 80, 155, 246, 147, 234, 227, 157, 137, 101, 84, 115, 103, 77, 44, 84, 134, 140, 77, 224, 176, 242, 254, 171, 115, 193, 29]

Don't iterate by lines for binary files

Don't do the following - this pulls a chunk of arbitrary size until it gets to a newline character - too slow when the chunks are too small, and possibly too large as well:

    with open(path, 'rb') as file:
        for chunk in file: # text newline iteration - not for bytes
            for byte in chunk:
                yield byte

The above is only good for what are semantically human readable text files (like plain text, code, markup, markdown etc... essentially anything ascii, utf, latin, etc... encoded).

查看更多
ら面具成の殇う
6楼-- · 2018-12-31 05:47

To read a file — one byte at a time (ignoring the buffering) — you could use the two-argument iter(callable, sentinel) built-in function:

with open(filename, 'rb') as file:
    for byte in iter(lambda: file.read(1), b''):
        # Do stuff with byte

It calls file.read(1) until it returns nothing b'' (empty bytestring). The memory doesn't grow unlimited for large files. You could pass buffering=0 to open(), to disable the buffering — it guarantees that only one byte is read per iteration (slow).

with-statement closes the file automatically — including the case when the code underneath raises an exception.

Despite the presence of internal buffering by default, it is still inefficient to process one byte at a time. For example, here's the blackhole.py utility that eats everything it is given:

#!/usr/bin/env python3
"""Discard all input. `cat > /dev/null` analog."""
import sys
from functools import partial
from collections import deque

chunksize = int(sys.argv[1]) if len(sys.argv) > 1 else (1 << 15)
deque(iter(partial(sys.stdin.detach().read, chunksize), b''), maxlen=0)

Example:

$ dd if=/dev/zero bs=1M count=1000 | python3 blackhole.py

It processes ~1.5 GB/s when chunksize == 32768 on my machine and only ~7.5 MB/s when chunksize == 1. That is, it is 200 times slower to read one byte at a time. Take it into account if you can rewrite your processing to use more than one byte at a time and if you need performance.

mmap allows you to treat a file as a bytearray and a file object simultaneously. It can serve as an alternative to loading the whole file in memory if you need access both interfaces. In particular, you can iterate one byte at a time over a memory-mapped file just using a plain for-loop:

from mmap import ACCESS_READ, mmap

with open(filename, 'rb', 0) as f, mmap(f.fileno(), 0, access=ACCESS_READ) as s:
    for byte in s: # length is equal to the current file size
        # Do stuff with byte

mmap supports the slice notation. For example, mm[i:i+len] returns len bytes from the file starting at position i. The context manager protocol is not supported before Python 3.2; you need to call mm.close() explicitly in this case. Iterating over each byte using mmap consumes more memory than file.read(1), but mmap is an order of magnitude faster.

查看更多
冷夜・残月
7楼-- · 2018-12-31 05:49

If the file is not too big that holding it in memory is a problem:

bytes_read = open("filename", "rb").read()
for b in bytes_read:
    process_byte(b)

where process_byte represents some operation you want to perform on the passed-in byte.

If you want to process a chunk at a time:

file = open("filename", "rb")
try:
    bytes_read = file.read(CHUNKSIZE)
    while bytes_read:
        for b in bytes_read:
            process_byte(b)
        bytes_read = file.read(CHUNKSIZE)
finally:
    file.close()
查看更多
登录 后发表回答