How can I combine rows within the same data frame

2019-02-15 15:14发布

Sample of 2 (made-up) example rows in df:

userid   facultyid  courseid schoolid
167       265        NA       1678  
167       71111      301      NA

Suppose that I have a couple hundred duplicate userid like in the above example. However, the vast majority of userid have different values.

How can I combine rows with duplicate userid in such a way as to stick to the column values in the 1st (of the 2) row unless the first value is NA (in which case the NA will be repopulated with whatever value came from the second row)?

In essence, drawing from the above example, my ideal output would contain:

userid   facultyid  courseid schoolid
167       265        301       1678  

4条回答
走好不送
2楼-- · 2019-02-15 15:36
# initialize a vector that will contain row numbers which should be erased
rows.to.erase <- c()

# loop over the rows, starting from top
for(i in 1:(nrow(dat)-1)) {
  if(dat$userid[i] == dat$userid[i+1]) {
    # loop over columns to recuperate data when a NA is present
    for(j in 2:4) {
      if(is.na(dat[i,j]))
        dat[i,j] <- dat[i+1,j]
    }
    rows.to.erase <- append(rows.to.erase, i+1)
  }
}

dat.clean <- dat[-rows.to.erase,]
dat.clean
#   userid facultyid courseid schoolid
# 1    167       265      301     1678
查看更多
趁早两清
3楼-- · 2019-02-15 15:42

Here's a different approach using ddply :

# requires the plyr package
library(plyr)

# Your example dataframe with added lines
schoolex <- data.frame(userid = c(167, 167, 200, 203, 203), facultyid = c(265, 71111, 200, 300, NA), 
                        courseid = c(NA, 301, 302, 303, 303), schoolid = c(1678, NA, 1678, NA, 1678))

schoolex_duprm <- ddply(schoolex, .(userid), summarize, facultyid2 = facultyid[!is.na(facultyid)][1], 
                               courseid2 = courseid[!is.na(courseid)][1], 
                               schoolid2 = schoolid[!is.na(schoolid)][1])
查看更多
等我变得足够好
4楼-- · 2019-02-15 15:42

Here's a simple one-liner from plyr. I wrote it a bit more generally than you asked:

 a <- data.frame(x=c(1,2,3,1,2,3,1,2,3),y=c(2,3,1,1,2,3,2,3,1),
       z=c(NA,1,NA,2,NA,3,4,NA,5),zz=c(1,NA,2,NA,3,NA,4,NA,5))

 ddply(a,~x+y,summarize,z=first(z[!is.na(z)]),zz=first(zz[!is.na(zz)]))

Specifically answering the original question, if your data frame is named a, :

 ddply(a,~userid,summarize,facultyid=first(facultyid[!is.na(facultyid)]),
         courseid=first(courseid[!is.na(courseid)],
         schoolid=first(schoolid[!is.na(schoolid)])
查看更多
叛逆
5楼-- · 2019-02-15 15:44
aggregate(x = df1, by = list(df1$userid), FUN = function(x) na.omit(x)[1])[,-1]

or use dplyr library:

library(dplyr)

df1 %>%
  group_by(userid) %>%
  summarise_each(funs(first(na.omit(.))))
查看更多
登录 后发表回答