We are getting very slow compile times, which can take upwards of 20+ minutes on dual core 2GHz, 2G Ram machines.
A lot of this is due to the size of our solution which has grown to 70+ projects, as well as VSS which is a bottle neck in itself when you have a lot of files. (swapping out VSS is not an option unfortunately, so I don't want this to descend into a VSS bash)
We are looking at merging projects. We are also looking at having multiple solutions to achieve greater separation of concerns and quicker compile times for each element of the application. This I can see will become a DLL hell as we try to keep things in synch.
I am interested to know how other teams have dealt with this scaling issue, what do you do when your code base reaches a critical mass that you are wasting half the day watching the status bar deliver compile messages.
UPDATE I neglected to mention this is a C# solution. Thanks for all the C++ suggestions, but it's been a few years since I've had to worry about headers.
EDIT:
Nice suggestions that have helped so far (not saying there aren't other nice suggestions below, just what has helped)
- New 3GHz laptop - the power of lost utilization works wonders when whinging to management
- Disable Anti Virus during compile
- 'Disconnecting' from VSS (actually the network) during compile - I may get us to remove VS-VSS integration altogether and stick to using the VSS UI
Still not rip-snorting through a compile, but every bit helps.
Orion did mention in a comment that generics may have a play also. From my tests there does appear to be a minimal performance hit, but not high enough to sure - compile times can be inconsistent due to disc activity. Due to time limitations, my tests didn't include as many Generics, or as much code, as would appear in live system, so that may accumulate. I wouldn't avoid using generics where they are supposed to be used, just for compile time performance
WORKAROUND
We are testing the practice of building new areas of the application in new solutions, importing in the latest dlls as required, them integrating them into the larger solution when we are happy with them.
We may also do them same to existing code by creating temporary solutions that just encapsulate the areas we need to work on, and throwing them away after reintegrating the code. We need to weigh up the time it will take to reintegrate this code against the time we gain by not having Rip Van Winkle like experiences with rapid recompiling during development.
Before spending money to invest in faster hard drives, try building your project entirely on a RAM disk (assuming you have the RAM to spare). You can find various free RAM disk drivers on the net. You won't find any physical drive, including SSDs, that are faster than a RAM disk.
In my case, a project that took 5 minutes to build on a 6-core i7 on a 7200 RPM SATA drive with Incredibuild was reduced by only about 15 seconds by using a RAM disk. Considering the need to recopy to permanent storage and the potential for lost work, 15 seconds is not enough incentive to use a RAM disk and probably not much incentive to spend several hundreds of dollars on a high-RPM or SSD drive.
The small gain may indicate that the build was CPU bound or that Windows file caching was rather effective, but since both tests were done from a state where the files weren't cached, I lean heavily towards CPU-bound compiles.
Depending on the actual code you're compiling your mileage may vary -- so don't hesitate to test.
When choosing a CPU: L1 cache size seems to have a huge impact on compilation time. Also, it is usually better to have 2 fast cores than 4 slow ones. Visual Studio doesn't use the extra cores very effectively. (I base this on my experience with the C++ compiler, but it is probably also true for the C# one.)
Turn off your antivirus. It adds ages to the compile time.
If it's a C++ project, then you should be using precompiled headers. This makes a massive difference in compile times. Not sure what cl.exe is really doing (with not using precompiled headers), it seems to be looking for lots of STL headers in all of the wrong places before finally going to the correct location. This adds entire seconds to every single .cpp file being compiled. Not sure if this is a cl.exe bug, or some sort of STL problem in VS2008.
There's undocumented /MP switch in Visual Studio 2005, see http://lahsiv.net/blog/?p=40, which would enable parallel compilation on file basis rather than project basis. This may speed up compiling of the last project, or, if you compile one project.
We have nearly 100 projects in one solution and a dev build time of only seconds :)
For local development builds we created a Visual Studio Addin that changes
Project references
toDLL references
and unloads the unwanted projects (and an option to switch them back of course).Our builds now only take seconds when we are working on only a few projects at a time. We can also still debug the additional projects as it links to the debug DLLs. The tool typically takes 10-30 seconds to make a large number of changes, but you don't have to do it that often.
Update May 2015
The deal I made (in comments below), was that I would release the plugin to Open Source if it gets enough interest. 4 years later it has only 44 votes (and Visual Studio now has two subsequent versions), so it is currently a low-priority project.