EDIT: I've updated the code below to resemble the progress I have made. I'm trying to write the .wav
header myself. The code does not work properly as of now, the audio is not being written to the file properly. The code does not contain any attempts to convert it to a .flac
file yet.
I am using a Raspberry Pi (Debian Linux) to record audio with the ALSA library. The recording works fine, but I need to encode the input audio into the FLAC codec.
This is where I get lost. I have spent a considerable amount of time trying to figure out how to convert this raw data into FLAC, but I keep coming up with examples of how to convert .wav
files into .flac
files.
Here is the current (updated) code I have for recording audio with ALSA (it may be a bit rough, I'm still picking up C++):
// Use the newer ALSA API
#define ALSA_PCM_NEW_HW_PARAMS_API
#include <alsa/asoundlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct Riff
{
char chunkId[4]; // "RIFF" (assuming char is 8 bits)
int chunkSize; // (assuming int is 32 bits)
char format[4]; // "WAVE"
};
struct Format
{
char chunkId[4]; // "fmt "
int chunkSize;
short format; // assuming short is 16 bits
short numChannels;
int sampleRate;
int byteRate;
short align;
short bitsPerSample;
};
struct Data
{
char chunkId[4]; // "data"
int chunkSize; // length of data
char* data;
};
struct Wave // Actual structure of a PCM WAVE file
{
Riff riffHeader;
Format formatHeader;
Data dataHeader;
};
int main(int argc, char *argv[])
{
void saveWaveFile(struct Wave *waveFile);
long loops;
int rc;
int size;
snd_pcm_t *handle;
snd_pcm_hw_params_t *params;
unsigned int sampleRate = 44100;
int dir;
snd_pcm_uframes_t frames;
char *buffer;
char *device = (char*) "plughw:1,0";
//char *device = (char*) "default";
printf("Capture device is %s\n", device);
/* Open PCM device for recording (capture). */
rc = snd_pcm_open(&handle, device, SND_PCM_STREAM_CAPTURE, 0);
if (rc < 0)
{
fprintf(stderr, "Unable to open PCM device: %s\n", snd_strerror(rc));
exit(1);
}
/* Allocate a hardware parameters object. */
snd_pcm_hw_params_alloca(¶ms);
/* Fill it in with default values. */
snd_pcm_hw_params_any(handle, params);
/* Set the desired hardware parameters. */
/* Interleaved mode */
snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED);
/* Signed 16-bit little-endian format */
snd_pcm_hw_params_set_format(handle, params, SND_PCM_FORMAT_S16_LE);
/* Two channels (stereo) */
snd_pcm_hw_params_set_channels(handle, params, 2);
/* 44100 bits/second sampling rate (CD quality) */
snd_pcm_hw_params_set_rate_near(handle, params, &sampleRate, &dir);
/* Set period size to 32 frames. */
frames = 32;
snd_pcm_hw_params_set_period_size_near(handle, params, &frames, &dir);
/* Write the parameters to the driver */
rc = snd_pcm_hw_params(handle, params);
if (rc < 0)
{
fprintf(stderr, "Unable to set HW parameters: %s\n", snd_strerror(rc));
exit(1);
}
/* Use a buffer large enough to hold one period */
snd_pcm_hw_params_get_period_size(params, &frames, &dir);
size = frames * 4; /* 2 bytes/sample, 2 channels */
buffer = (char *) malloc(size);
/* We want to loop for 5 seconds */
snd_pcm_hw_params_get_period_time(params, &sampleRate, &dir);
loops = 5000000 / sampleRate;
while (loops > 0)
{
loops--;
rc = snd_pcm_readi(handle, buffer, frames);
if (rc == -EPIPE)
{
/* EPIPE means overrun */
fprintf(stderr, "Overrun occurred.\n");
snd_pcm_prepare(handle);
} else if (rc < 0)
{
fprintf(stderr, "Error from read: %s\n", snd_strerror(rc));
} else if (rc != (int)frames)
{
fprintf(stderr, "Short read, read %d frames.\n", rc);
}
if (rc != size) fprintf(stderr, "Short write: wrote %d bytes.\n", rc);
}
Wave wave;
strcpy(wave.riffHeader.chunkId, "RIFF");
wave.riffHeader.chunkSize = 36 + size;
strcpy(wave.riffHeader.format, "WAVE");
strcpy(wave.formatHeader.chunkId, "fmt");
wave.formatHeader.chunkSize = 16;
wave.formatHeader.format = 1; // PCM, other value indicates compression
wave.formatHeader.numChannels = 2; // Stereo
wave.formatHeader.sampleRate = sampleRate;
wave.formatHeader.byteRate = sampleRate * 2 * 2;
wave.formatHeader.align = 2 * 2;
wave.formatHeader.bitsPerSample = 16;
strcpy(wave.dataHeader.chunkId, "data");
wave.dataHeader.chunkSize = size;
wave.dataHeader.data = buffer;
saveWaveFile(&wave);
snd_pcm_drain(handle);
snd_pcm_close(handle);
free(buffer);
return 0;
}
void saveWaveFile(struct Wave *waveFile)
{
FILE *file = fopen("test.wav", "wb");
size_t written;
if (file == NULL)
{
fprintf(stderr, "Cannot open file for writing.\n");
exit(1);
}
written = fwrite(waveFile, sizeof waveFile[0], 1, file);
fclose(file);
if (written < 1);
{
fprintf(stderr, "Writing to file failed, error %d.\n", written);
exit(1);
}
}
How would I go about converting the PCM data into the FLAC and save it to disk for later use? I have downloaded libflac-dev
already and just need an example to go off of.
The way I am doing it right now:
./capture > test.raw // or ./capture > test.flac
The way it should be (program does everything for me):
./capture
Please note: this is a modified version of the Flac Encoder sample from their git repo.
It includes some comments and hints on how to change it to OP's requirements, entire source for this will be a little bit long.
And do note that this is the C API, which tends to be a bit more complex than the C++ one. But it is fairly easy to convert between the two once you get the idea.
Please refer to the below code :
FLAC Encoder Test Code
This example is using a wav file as an input and then encodes it into FLAC.
As I understand, there is no major difference b/w WAV file and your RAW data, I think you can modify this code to directly read the "buffer" and convert it. You already have all the related information (Channel/Bitrate etc) so it should not be much of a problem to remove the WAV header reading code.
If I understand the
FLAC::Encoder::File
documentation, you can do something likewhere
buffer
is an array (of sizesamples
) of 32-bit integer pointers.Unfortunately, I know next to nothing about audio encoding so I can't speak for any other options. Good luck!