Speed comparison with Project Euler: C vs Python v

2019-01-03 19:06发布

I have taken Problem #12 from Project Euler as a programming exercise and to compare my (surely not optimal) implementations in C, Python, Erlang and Haskell. In order to get some higher execution times, I search for the first triangle number with more than 1000 divisors instead of 500 as stated in the original problem.

The result is the following:

C:

lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320

real    0m11.074s
user    0m11.070s
sys 0m0.000s

Python:

lorenzo@enzo:~/erlang$ time ./euler12.py 
842161320

real    1m16.632s
user    1m16.370s
sys 0m0.250s

Python with PyPy:

lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py 
842161320

real    0m13.082s
user    0m13.050s
sys 0m0.020s

Erlang:

lorenzo@enzo:~/erlang$ erlc euler12.erl 
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.7.4  (abort with ^G)
1> 842161320

real    0m48.259s
user    0m48.070s
sys 0m0.020s

Haskell:

lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main             ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx 
842161320

real    2m37.326s
user    2m37.240s
sys 0m0.080s

Summary:

  • C: 100%
  • Python: 692% (118% with PyPy)
  • Erlang: 436% (135% thanks to RichardC)
  • Haskell: 1421%

I suppose that C has a big advantage as it uses long for the calculations and not arbitrary length integers as the other three. Also it doesn't need to load a runtime first (Do the others?).

Question 1: Do Erlang, Python and Haskell lose speed due to using arbitrary length integers or don't they as long as the values are less than MAXINT?

Question 2: Why is Haskell so slow? Is there a compiler flag that turns off the brakes or is it my implementation? (The latter is quite probable as Haskell is a book with seven seals to me.)

Question 3: Can you offer me some hints how to optimize these implementations without changing the way I determine the factors? Optimization in any way: nicer, faster, more "native" to the language.

EDIT:

Question 4: Do my functional implementations permit LCO (last call optimization, a.k.a tail recursion elimination) and hence avoid adding unnecessary frames onto the call stack?

I really tried to implement the same algorithm as similar as possible in the four languages, although I have to admit that my Haskell and Erlang knowledge is very limited.


Source codes used:

#include <stdio.h>
#include <math.h>

int factorCount (long n)
{
    double square = sqrt (n);
    int isquare = (int) square;
    int count = isquare == square ? -1 : 0;
    long candidate;
    for (candidate = 1; candidate <= isquare; candidate ++)
        if (0 == n % candidate) count += 2;
    return count;
}

int main ()
{
    long triangle = 1;
    int index = 1;
    while (factorCount (triangle) < 1001)
    {
        index ++;
        triangle += index;
    }
    printf ("%ld\n", triangle);
}

#! /usr/bin/env python3.2

import math

def factorCount (n):
    square = math.sqrt (n)
    isquare = int (square)
    count = -1 if isquare == square else 0
    for candidate in range (1, isquare + 1):
        if not n % candidate: count += 2
    return count

triangle = 1
index = 1
while factorCount (triangle) < 1001:
    index += 1
    triangle += index

print (triangle)

-module (euler12).
-compile (export_all).

factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).

factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;

factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;

factorCount (Number, Sqrt, Candidate, Count) ->
    case Number rem Candidate of
        0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
        _ -> factorCount (Number, Sqrt, Candidate + 1, Count)
    end.

nextTriangle (Index, Triangle) ->
    Count = factorCount (Triangle),
    if
        Count > 1000 -> Triangle;
        true -> nextTriangle (Index + 1, Triangle + Index + 1)  
    end.

solve () ->
    io:format ("~p~n", [nextTriangle (1, 1) ] ),
    halt (0).

factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
    where square = sqrt $ fromIntegral number
          isquare = floor square

factorCount' number sqrt candidate count
    | fromIntegral candidate > sqrt = count
    | number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
    | otherwise = factorCount' number sqrt (candidate + 1) count

nextTriangle index triangle
    | factorCount triangle > 1000 = triangle
    | otherwise = nextTriangle (index + 1) (triangle + index + 1)

main = print $ nextTriangle 1 1

18条回答
三岁会撩人
2楼-- · 2019-01-03 19:21

Using GHC 7.0.3, gcc 4.4.6, Linux 2.6.29 on an x86_64 Core2 Duo (2.5GHz) machine, compiling using ghc -O2 -fllvm -fforce-recomp for Haskell and gcc -O3 -lm for C.

  • Your C routine runs in 8.4 seconds (faster than your run probably because of -O3)
  • The Haskell solution runs in 36 seconds (due to the -O2 flag)
  • Your factorCount' code isn't explicitly typed and defaulting to Integer (thanks to Daniel for correcting my misdiagnosis here!). Giving an explicit type signature (which is standard practice anyway) using Int and the time changes to 11.1 seconds
  • in factorCount' you have needlessly called fromIntegral. A fix results in no change though (the compiler is smart, lucky for you).
  • You used mod where rem is faster and sufficient. This changes the time to 8.5 seconds.
  • factorCount' is constantly applying two extra arguments that never change (number, sqrt). A worker/wrapper transformation gives us:
 $ time ./so
 842161320  

 real    0m7.954s  
 user    0m7.944s  
 sys     0m0.004s  

That's right, 7.95 seconds. Consistently half a second faster than the C solution. Without the -fllvm flag I'm still getting 8.182 seconds, so the NCG backend is doing well in this case too.

Conclusion: Haskell is awesome.

Resulting Code

factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
    where square = sqrt $ fromIntegral number
          isquare = floor square

factorCount' :: Int -> Int -> Int -> Int -> Int
factorCount' number sqrt candidate0 count0 = go candidate0 count0
  where
  go candidate count
    | candidate > sqrt = count
    | number `rem` candidate == 0 = go (candidate + 1) (count + 2)
    | otherwise = go (candidate + 1) count

nextTriangle index triangle
    | factorCount triangle > 1000 = triangle
    | otherwise = nextTriangle (index + 1) (triangle + index + 1)

main = print $ nextTriangle 1 1

EDIT: So now that we've explored that, lets address the questions

Question 1: Do erlang, python and haskell lose speed due to using arbitrary length integers or don't they as long as the values are less than MAXINT?

In Haskell, using Integer is slower than Int but how much slower depends on the computations performed. Luckily (for 64 bit machines) Int is sufficient. For portability sake you should probably rewrite my code to use Int64 or Word64 (C isn't the only language with a long).

Question 2: Why is haskell so slow? Is there a compiler flag that turns off the brakes or is it my implementation? (The latter is quite probable as haskell is a book with seven seals to me.)

Question 3: Can you offer me some hints how to optimize these implementations without changing the way I determine the factors? Optimization in any way: nicer, faster, more "native" to the language.

That was what I answered above. The answer was

  • 0) Use optimization via -O2
  • 1) Use fast (notably: unbox-able) types when possible
  • 2) rem not mod (a frequently forgotten optimization) and
  • 3) worker/wrapper transformation (perhaps the most common optimization).

Question 4: Do my functional implementations permit LCO and hence avoid adding unnecessary frames onto the call stack?

Yes, that wasn't the issue. Good work and glad you considered this.

查看更多
Root(大扎)
3楼-- · 2019-01-03 19:22
#include <stdio.h>
#include <math.h>

int factorCount (long n)
{
    double square = sqrt (n);
    int isquare = (int) square+1;
    long candidate = 2;
    int count = 1;
    while(candidate <= isquare && candidate<=n){
        int c = 1;
        while (n % candidate == 0) {
           c++;
           n /= candidate;
        }
        count *= c;
        candidate++;
    }
    return count;
}

int main ()
{
    long triangle = 1;
    int index = 1;
    while (factorCount (triangle) < 1001)
    {
        index ++;
        triangle += index;
    }
    printf ("%ld\n", triangle);
}

gcc -lm -Ofast euler.c

time ./a.out

2.79s user 0.00s system 99% cpu 2.794 total

查看更多
再贱就再见
4楼-- · 2019-01-03 19:24

In regards to Python optimization, in addition to using PyPy (for pretty impressive speed-ups with zero change to your code), you could use PyPy's translation toolchain to compile an RPython-compliant version, or Cython to build an extension module, both of which are faster than the C version in my testing, with the Cython module nearly twice as fast. For reference I include C and PyPy benchmark results as well:

C (compiled with gcc -O3 -lm)

% time ./euler12-c 
842161320

./euler12-c  11.95s 
 user 0.00s 
 system 99% 
 cpu 11.959 total

PyPy 1.5

% time pypy euler12.py
842161320
pypy euler12.py  
16.44s user 
0.01s system 
99% cpu 16.449 total

RPython (using latest PyPy revision, c2f583445aee)

% time ./euler12-rpython-c
842161320
./euler12-rpy-c  
10.54s user 0.00s 
system 99% 
cpu 10.540 total

Cython 0.15

% time python euler12-cython.py
842161320
python euler12-cython.py  
6.27s user 0.00s 
system 99% 
cpu 6.274 total

The RPython version has a couple of key changes. To translate into a standalone program you need to define your target, which in this case is the main function. It's expected to accept sys.argv as it's only argument, and is required to return an int. You can translate it by using translate.py, % translate.py euler12-rpython.py which translates to C and compiles it for you.

# euler12-rpython.py

import math, sys

def factorCount(n):
    square = math.sqrt(n)
    isquare = int(square)
    count = -1 if isquare == square else 0
    for candidate in xrange(1, isquare + 1):
        if not n % candidate: count += 2
    return count

def main(argv):
    triangle = 1
    index = 1
    while factorCount(triangle) < 1001:
        index += 1
        triangle += index
    print triangle
    return 0

if __name__ == '__main__':
    main(sys.argv)

def target(*args):
    return main, None

The Cython version was rewritten as an extension module _euler12.pyx, which I import and call from a normal python file. The _euler12.pyx is essentially the same as your version, with some additional static type declarations. The setup.py has the normal boilerplate to build the extension, using python setup.py build_ext --inplace.

# _euler12.pyx
from libc.math cimport sqrt

cdef int factorCount(int n):
    cdef int candidate, isquare, count
    cdef double square
    square = sqrt(n)
    isquare = int(square)
    count = -1 if isquare == square else 0
    for candidate in range(1, isquare + 1):
        if not n % candidate: count += 2
    return count

cpdef main():
    cdef int triangle = 1, index = 1
    while factorCount(triangle) < 1001:
        index += 1
        triangle += index
    print triangle

# euler12-cython.py
import _euler12
_euler12.main()

# setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("_euler12", ["_euler12.pyx"])]

setup(
  name = 'Euler12-Cython',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules
)

I honestly have very little experience with either RPython or Cython, and was pleasantly surprised at the results. If you are using CPython, writing your CPU-intensive bits of code in a Cython extension module seems like a really easy way to optimize your program.

查看更多
你好瞎i
5楼-- · 2019-01-03 19:24

Trying GO:

package main

import "fmt"
import "math"

func main() {
    var n, m, c int
    for i := 1; ; i++ {
        n, m, c = i * (i + 1) / 2, int(math.Sqrt(float64(n))), 0
        for f := 1; f < m; f++ {
            if n % f == 0 { c++ }
    }
    c *= 2
    if m * m == n { c ++ }
    if c > 1001 {
        fmt.Println(n)
        break
        }
    }
}

I get:

original c version: 9.1690 100%
go: 8.2520 111%

But using:

package main

import (
    "math"
    "fmt"
 )

// Sieve of Eratosthenes
func PrimesBelow(limit int) []int {
    switch {
        case limit < 2:
            return []int{}
        case limit == 2:
            return []int{2}
    }
    sievebound := (limit - 1) / 2
    sieve := make([]bool, sievebound+1)
    crosslimit := int(math.Sqrt(float64(limit))-1) / 2
    for i := 1; i <= crosslimit; i++ {
        if !sieve[i] {
            for j := 2 * i * (i + 1); j <= sievebound; j += 2*i + 1 {
                sieve[j] = true
            }
        }
    }
    plimit := int(1.3*float64(limit)) / int(math.Log(float64(limit)))
    primes := make([]int, plimit)
    p := 1
    primes[0] = 2
    for i := 1; i <= sievebound; i++ {
        if !sieve[i] {
            primes[p] = 2*i + 1
            p++
            if p >= plimit {
                break
            }
        }
    }
    last := len(primes) - 1
    for i := last; i > 0; i-- {
        if primes[i] != 0 {
            break
        }
        last = i
    }
    return primes[0:last]
}



func main() {
    fmt.Println(p12())
}
// Requires PrimesBelow from utils.go
func p12() int {
    n, dn, cnt := 3, 2, 0
    primearray := PrimesBelow(1000000)
    for cnt <= 1001 {
        n++
        n1 := n
        if n1%2 == 0 {
            n1 /= 2
        }
        dn1 := 1
        for i := 0; i < len(primearray); i++ {
            if primearray[i]*primearray[i] > n1 {
                dn1 *= 2
                break
            }
            exponent := 1
            for n1%primearray[i] == 0 {
                exponent++
                n1 /= primearray[i]
            }
            if exponent > 1 {
                dn1 *= exponent
            }
            if n1 == 1 {
                break
            }
        }
        cnt = dn * dn1
        dn = dn1
    }
    return n * (n - 1) / 2
}

I get:

original c version: 9.1690 100%
thaumkid's c version: 0.1060 8650%
first go version: 8.2520 111%
second go version: 0.0230 39865%

I also tried Python3.6 and pypy3.3-5.5-alpha:

original c version: 8.629 100%
thaumkid's c version: 0.109 7916%
Python3.6: 54.795 16%
pypy3.3-5.5-alpha: 13.291 65%

and then with following code I got:

original c version: 8.629 100%
thaumkid's c version: 0.109 8650%
Python3.6: 1.489 580%
pypy3.3-5.5-alpha: 0.582 1483%

def D(N):
    if N == 1: return 1
    sqrtN = int(N ** 0.5)
    nf = 1
    for d in range(2, sqrtN + 1):
        if N % d == 0:
            nf = nf + 1
    return 2 * nf - (1 if sqrtN**2 == N else 0)

L = 1000
Dt, n = 0, 0

while Dt <= L:
    t = n * (n + 1) // 2
    Dt = D(n/2)*D(n+1) if n%2 == 0 else D(n)*D((n+1)/2)
    n = n + 1

print (t)
查看更多
欢心
6楼-- · 2019-01-03 19:25

Some more numbers and explanations for the C version. Apparently noone did it during all those years. Remember to upvote this answer so it can get on top for everyone to see and learn.

Step One: Benchmark of the author's programs

Laptop Specifications:

  • CPU i3 M380 (931 MHz - maximum battery saving mode)
  • 4GB memory
  • Win7 64 bits
  • Microsoft Visual Studio 2012 Ultimate
  • Cygwin with gcc 4.9.3
  • Python 2.7.10

Commands:

compiling on VS x64 command prompt > `for /f %f in ('dir /b *.c') do cl /O2 /Ot /Ox %f -o %f_x64_vs2012.exe`
compiling on cygwin with gcc x64   > `for f in ./*.c; do gcc -m64 -O3 $f -o ${f}_x64_gcc.exe ; done`
time (unix tools) using cygwin > `for f in ./*.exe; do  echo "----------"; echo $f ; time $f ; done`

.

----------
$ time python ./original.py

real    2m17.748s
user    2m15.783s
sys     0m0.093s
----------
$ time ./original_x86_vs2012.exe

real    0m8.377s
user    0m0.015s
sys     0m0.000s
----------
$ time ./original_x64_vs2012.exe

real    0m8.408s
user    0m0.000s
sys     0m0.015s
----------
$ time ./original_x64_gcc.exe

real    0m20.951s
user    0m20.732s
sys     0m0.030s

Filenames are: integertype_architecture_compiler.exe

  • integertype is the same as the original program for now (more on that later)
  • architecture is x86 or x64 depending on the compiler settings
  • compiler is gcc or vs2012

Step Two: Investigate, Improve and Benchmark Again

VS is 250% faster than gcc. The two compilers should give a similar speed. Obviously, something is wrong with the code or the compiler options. Let's investigate!

The first point of interest is the integer types. Conversions can be expensive and consistency is important for better code generation & optimizations. All integers should be the same type.

It's a mixed mess of int and long right now. We're going to improve that. What type to use? The fastest. Gotta benchmark them'all!

----------
$ time ./int_x86_vs2012.exe

real    0m8.440s
user    0m0.016s
sys     0m0.015s
----------
$ time ./int_x64_vs2012.exe

real    0m8.408s
user    0m0.016s
sys     0m0.015s
----------
$ time ./int32_x86_vs2012.exe

real    0m8.408s
user    0m0.000s
sys     0m0.015s
----------
$ time ./int32_x64_vs2012.exe

real    0m8.362s
user    0m0.000s
sys     0m0.015s
----------
$ time ./int64_x86_vs2012.exe

real    0m18.112s
user    0m0.000s
sys     0m0.015s
----------
$ time ./int64_x64_vs2012.exe

real    0m18.611s
user    0m0.000s
sys     0m0.015s
----------
$ time ./long_x86_vs2012.exe

real    0m8.393s
user    0m0.015s
sys     0m0.000s
----------
$ time ./long_x64_vs2012.exe

real    0m8.440s
user    0m0.000s
sys     0m0.015s
----------
$ time ./uint32_x86_vs2012.exe

real    0m8.362s
user    0m0.000s
sys     0m0.015s
----------
$ time ./uint32_x64_vs2012.exe

real    0m8.393s
user    0m0.015s
sys     0m0.015s
----------
$ time ./uint64_x86_vs2012.exe

real    0m15.428s
user    0m0.000s
sys     0m0.015s
----------
$ time ./uint64_x64_vs2012.exe

real    0m15.725s
user    0m0.015s
sys     0m0.015s
----------
$ time ./int_x64_gcc.exe

real    0m8.531s
user    0m8.329s
sys     0m0.015s
----------
$ time ./int32_x64_gcc.exe

real    0m8.471s
user    0m8.345s
sys     0m0.000s
----------
$ time ./int64_x64_gcc.exe

real    0m20.264s
user    0m20.186s
sys     0m0.015s
----------
$ time ./long_x64_gcc.exe

real    0m20.935s
user    0m20.809s
sys     0m0.015s
----------
$ time ./uint32_x64_gcc.exe

real    0m8.393s
user    0m8.346s
sys     0m0.015s
----------
$ time ./uint64_x64_gcc.exe

real    0m16.973s
user    0m16.879s
sys     0m0.030s

Integer types are int long int32_t uint32_t int64_t and uint64_t from #include <stdint.h>

There are LOTS of integer types in C, plus some signed/unsigned to play with, plus the choice to compile as x86 or x64 (not to be confused with the actual integer size). That is a lot of versions to compile and run ^^

Step Three: Understanding the Numbers

Definitive conclusions:

  • 32 bits integers are ~200% faster than 64 bits equivalents
  • unsigned 64 bits integers are 25 % faster than signed 64 bits (Unfortunately, I have no explanation for that)

Trick question: "What are the sizes of int and long in C?"
The right answer is: The size of int and long in C are not well-defined!

From the C spec:

int is at least 32 bits
long is at least an int

From the gcc man page (-m32 and -m64 flags):

The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any i386 system.
The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD’s x86-64 architecture.

From MSDN documentation (Data Type Ranges) https://msdn.microsoft.com/en-us/library/s3f49ktz%28v=vs.110%29.aspx :

int, 4 bytes, also knows as signed
long, 4 bytes, also knows as long int and signed long int

To Conclude This: Lessons Learned

  • 32 bits integers are faster than 64 bits integers.

  • Standard integers types are not well defined in C nor C++, they vary depending on compilers and architectures. When you need consistency and predictability, use the uint32_t integer family from #include <stdint.h>.

  • Speed issues solved. All other languages are back hundreds percent behind, C & C++ win again ! They always do. The next improvement will be multithreading using OpenMP :D

查看更多
欢心
7楼-- · 2019-01-03 19:26

Change: case (divisor(T,round(math:sqrt(T))) > 500) of

To: case (divisor(T,round(math:sqrt(T))) > 1000) of

This will produce the correct answer for the Erlang multi-process example.

查看更多
登录 后发表回答