There is a custom implementation of KSPA which needs to be re-written. The current implementation uses a modified Dijkstra's algorithm whose pseudocode is roughly explained below. It is commonly known as KSPA using edge-deletion strategy i think so. (i am a novice in graph-theory).
Step:-1. Calculate the shortest path between any given pair of nodes using the Dijkstra algorithm. k = 0 here.
Step:-2. Set k = 1
Step:-3. Extract all the edges from all the ‘k-1’ shortest path trees. Add the same to a linked list Edge_List.
Step:-4. Create a combination of ‘k’ edges from Edge_List to be deleted at once such that each edge belongs to a different SPT (Shortest Path Tree). This can be done by inspecting the ‘k’ value for each edge of the combination considered. The ‘k’ value has to be different for each of the edge of the chosen combination.
Step:-5. Delete the combination of edges chosen in the above step temporarily from the graph in memory.
Step:-6. Re-run Dijkstra for the same pair of nodes as in Step:-1.
Step:-7. Add the resulting path into a temporary list of paths. Paths_List.
Step:-8. Restore the deleted edges back into the graph.
Step:-9. Go to Step:-4 to get another combination of edges for deletion until all unique combinations are exhausted. This is nothing but choosing ‘r’ edges at a time among ‘n’ edges => nCr.
Step:-10. The ‘k+1’ th shortest path is = Minimum(Paths_List).
Step:-11. k = k + 1 Go to Step:-3, until k < N.
Step:-12. STOP
As i understand the algorithm, to get kth shortest path, ‘k-1’ SPTs are to be found between each source-destination pair and ‘k-1’ edges each from one SPT are to be deleted simultaneously for every combination. Clearly this algorithm has combinatorial complexity and clogs the server on large graphs. People suggested me Eppstein's algorithm (http://www.ics.uci.edu/~eppstein/pubs/Epp-SJC-98.pdf). But this white paper cites a 'digraph' and I did not see a mention that it works only for digraphs. I just wanted to ask folks here if anyone has used this algorithm on an undirected graph?
If not, are there good algorithms (in terms of time-complexity) to implement KSPA on an undirected graph?
Thanks in advance,
Time complexity: O(K*(E*log(K)+V*log(V)))
Memory complexity of O(K*V) (+O(E) for storing the input).
We perform a modified Djikstra as follows: