DataSet and DataTable both implement IDisposable, so, by conventional best practices, I should call their Dispose() methods.
However, from what I've read so far, DataSet and DataTable don't actually have any unmanaged resources, so Dispose() doesn't actually do much.
Plus, I can't just use using(DataSet myDataSet...)
because DataSet has a collection of DataTables.
So, to be safe, I'd need to iterate through myDataSet.Tables, dispose of each of the DataTables, then dispose of the DataSet.
So, is it worth the hassle to call Dispose() on all of my DataSets and DataTables?
Addendum:
For those of you who think that DataSet should be disposed:
In general, the pattern for disposing is to use using
or try..finally
, because you want to guarantee that Dispose() will be called.
However, this gets ugly real fast for a collection. For example, what do you do if one of the calls to Dispose() thrown an exception? Do you swallow it (which is "bad") so that you can continue on to dispose the next element?
Or, do you suggest that I just call myDataSet.Dispose(), and forget about disposing the DataTables in myDataSet.Tables?
I call dispose anytime an object implements IDisposeable. It's there for a reason.
DataSets can be huge memory hogs. The sooner they can be marked for clean up, the better.
update
It's been 5 years since I answered this question. I still agree with my answer. If there is a dispose method, it should be called when you are done with the object. The IDispose interface was implemented for a reason.
First of all I would check what Dispose does with a DataSet. Maybe using the reflector from redgate will help.
Even if object has no unmanaged resources, disposing might help GC by breaking object graphs. In general, if object implements IDisposable then Dispose() should be called.
Whether Dispose() actually does something or not depends on given class. In case of DataSet, Dispose() implementation is inherited from MarshalByValueComponent. It removes itself from container and calls Disposed event. The source code is below (disassembled with .NET Reflector):
Do you create the DataTables yourself? Because iterating through the children of any Object (as in DataSet.Tables) is usually not needed, as it's the job of the Parent to dispose all it's child members.
Generally, the rule is: If you created it and it implements IDisposable, Dispose it. If you did NOT create it, then do NOT dispose it, that's the job of the parent object. But each object may have special rules, check the Documentation.
For .net 3.5, it explicitly says "Dispose it when not using anymore", so that's what I would do.
Update (December 1, 2009):
I'd like to amend this answer and concede that the original answer was flawed.
The original analysis does apply to objects that require finalization – and the point that practices shouldn’t be accepted on the surface without an accurate, in-depth understanding still stands.
However, it turns out that DataSets, DataViews, DataTables suppress finalization in their constructors – this is why calling Dispose() on them explicitly does nothing.
Presumably, this happens because they don’t have unmanaged resources; so despite the fact that MarshalByValueComponent makes allowances for unmanaged resources, these particular implementations don’t have the need and can therefore forgo finalization.
(That .NET authors would take care to suppress finalization on the very types that normally occupy the most memory speaks to the importance of this practice in general for finalizable types.)
Notwithstanding, that these details are still under-documented since the inception of the .NET Framework (almost 8 years ago) is pretty surprising (that you’re essentially left to your own devices to sift though conflicting, ambiguous material to put the pieces together is frustrating at times but does provide a more complete understanding of the framework we rely on everyday).
After lots of reading, here’s my understanding:
If an object requires finalization, it could occupy memory longer than it needs to – here’s why: a) Any type that defines a destructor (or inherits from a type that defines a destructor) is considered finalizable; b) On allocation (before the constructor runs), a pointer is placed on the Finalization queue; c) A finalizable object normally requires 2 collections to be reclaimed (instead of the standard 1); d) Suppressing finalization doesn’t remove an object from the finalization queue (as reported by !FinalizeQueue in SOS) This command is misleading; Knowing what objects are on the finalization queue (in and of itself) isn’t helpful; Knowing what objects are on the finalization queue and still require finalization would be helpful (is there a command for this?)
Suppressing finalization turns a bit off in the object's header indicating to the runtime that it doesn’t need to have its Finalizer invoked (doesn’t need to move the FReachable queue); It remains on the Finalization queue (and continues to be reported by !FinalizeQueue in SOS)
The DataTable, DataSet, DataView classes are all rooted at MarshalByValueComponent, a finalizable object that can (potentially) handle unmanaged resources
4 (new references):
Original Answer:
There are a lot of misleading and generally very poor answers on this - anyone who's landed here should ignore the noise and read the references below carefully.
Without a doubt, Dispose should be called on any Finalizable objects.
DataTables are Finalizable.
Calling Dispose significantly speeds up the reclaiming of memory.
MarshalByValueComponent calls GC.SuppressFinalize(this) in its Dispose() - skipping this means having to wait for dozens if not hundreds of Gen0 collections before memory is reclaimed:
Take it from someone who's seen 100s of MBs of non-referenced DataTables in Gen2: this is hugely important and completely missed by the answers on this thread.
References:
1 - http://msdn.microsoft.com/en-us/library/ms973837.aspx
2 - http://vineetgupta.spaces.live.com/blog/cns!8DE4BDC896BEE1AD!1104.entry http://www.dotnetfunda.com/articles/article524-net-best-practice-no-2-improve-garbage-collector-performance-using-finalizedispose-pattern.aspx
3 - http://codeidol.com/csharp/net-framework/Inside-the-CLR/Automatic-Memory-Management/