SVM Visualization in MATLAB

2019-02-13 01:32发布

How do I visualize the SVM classification once I perform SVM training in Matlab?

So far, I have only trained the SVM with:

% Labels are -1 or 1
groundTruth = Ytrain;
d = xtrain;

model = svmtrain(groundTruth, d);

4条回答
再贱就再见
2楼-- · 2019-02-13 01:36

Assuming your data has more than two dimensions, you can perform a PCA, project the data to 2D, then assign them a color according to the output of your svm classifier (e.g., red for class A, blue for class B). This is quick to do and you will see if there is anything to visualize. However, data with a high dimensionality are not likely to be easily visualizable in 2D.

查看更多
看我几分像从前
3楼-- · 2019-02-13 01:38
model = svmtrain(groundTruth, d, 'ShowPlot', true);
查看更多
孤傲高冷的网名
4楼-- · 2019-02-13 01:42

If you are using LIBSVM, you can plot classification results:

% Labels are -1 or 1
groundTruth = Ytrain;
d = xtrain;

figure

% plot training data
hold on;
pos = find(groundTruth==1);
scatter(d(pos,1), d(pos,2), 'r')
pos = find(groundTruth==-1);
scatter(d(pos,1), d(pos,2), 'b')

% now plot support vectors
hold on;
sv = full(model.SVs);
plot(sv(:,1),sv(:,2),'ko');

% now plot decision area
[xi,yi] = meshgrid([min(d(:,1)):0.01:max(d(:,1))],[min(d(:,2)):0.01:max(d(:,2))]);
dd = [xi(:),yi(:)];
tic;[predicted_label, accuracy, decision_values] = svmpredict(zeros(size(dd,1),1), dd, model);toc
pos = find(predicted_label==1);
hold on;
redcolor = [1 0.8 0.8];
bluecolor = [0.8 0.8 1];
h1 = plot(dd(pos,1),dd(pos,2),'s','color',redcolor,'MarkerSize',10,'MarkerEdgeColor',redcolor,'MarkerFaceColor',redcolor);
pos = find(predicted_label==-1);
hold on;
h2 = plot(dd(pos,1),dd(pos,2),'s','color',bluecolor,'MarkerSize',10,'MarkerEdgeColor',bluecolor,'MarkerFaceColor',bluecolor);
uistack(h1, 'bottom');
uistack(h2, 'bottom');
查看更多
Luminary・发光体
5楼-- · 2019-02-13 02:00

Check out this svm-toy function similar to the one in LIBSVM. Obviously it only works for 2D binary classification

查看更多
登录 后发表回答