how do I print an unsigned char as hex in c++ usin

2019-01-03 13:15发布

I want to work with unsigned 8-bit variables in C++. Either unsigned char or uint8_t do the trick as far as the arithmetic is concerned (which is expected, since AFAIK uint8_t is just an alias for unsigned char, or so the debugger presents it.

The problem is that if I print out the variables using ostream in C++ it treats it as char. If I have:

unsigned char a = 0;
unsigned char b = 0xff;
cout << "a is " << hex << a <<"; b is " << hex << b << endl;

then the output is:

a is ^@; b is 377

instead of

a is 0; b is ff

I tried using uint8_t, but as I mentioned before, that's typedef'ed to unsigned char, so it does the same. How can I print my variables correctly?

Edit: I do this in many places throughout my code. Is there any way I can do this without casting to int each time I want to print?

14条回答
The star\"
2楼-- · 2019-01-03 13:24

You can read more about this at http://cpp.indi.frih.net/blog/2014/09/tippet-printing-numeric-values-for-chars-and-uint8_t/ and http://cpp.indi.frih.net/blog/2014/08/code-critique-stack-overflow-posters-cant-print-the-numeric-value-of-a-char/. I am only posting this because it has become clear that the author of the above articles does not intend to.

The simplest and most correct technique to do print a char as hex is

unsigned char a = 0;
unsigned char b = 0xff;
auto flags = cout.flags(); //I only include resetting the ioflags because so
                           //many answers on this page call functions where
                           //flags are changed and leave no way to  
                           //return them to the state they were in before 
                           //the function call
cout << "a is " << hex << +a <<"; b is " << +b << endl;
cout.flags(flags);

The readers digest version of how this works is that the unary + operator forces a no op type conversion to an int with the correct signedness. So, an unsigned char converts to unsigned int, a signed char converts to int, and a char converts to either unsigned int or int depending on whether char is signed or unsigned on your platform (it comes as a shock to many that char is special and not specified as either signed or unsigned).

The only negative of this technique is that it may not be obvious what is happening to a someone that is unfamiliar with it. However, I think that it is better to use the technique that is correct and teach others about it rather than doing something that is incorrect but more immediately clear.

查看更多
别忘想泡老子
3楼-- · 2019-01-03 13:26

Hm, it seems I re-invented the wheel yesterday... But hey, at least it's a generic wheel this time :) chars are printed with two hex digits, shorts with 4 hex digits and so on.

template<typename T>
struct hex_t
{
    T x;
};

template<typename T>
hex_t<T> hex(T x)
{
    hex_t<T> h = {x};
    return h;
}

template<typename T>
std::ostream& operator<<(std::ostream& os, hex_t<T> h)
{
    char buffer[2 * sizeof(T)];
    for (auto i = sizeof buffer; i--; )
    {
        buffer[i] = "0123456789ABCDEF"[h.x & 15];
        h.x >>= 4;
    }
    os.write(buffer, sizeof buffer);
    return os;
}
查看更多
Root(大扎)
4楼-- · 2019-01-03 13:27

Well, this works for me:

std::cout << std::hex << (0xFF & a) << std::endl;

If you just cast (int) as suggested it might add 1s to the left of a if its most significant bit is 1. So making this binary AND operation guarantees the output will have the left bits filled by 0s and also converts it to unsigned int forcing cout to print it as hex.

I hope this helps.

查看更多
霸刀☆藐视天下
5楼-- · 2019-01-03 13:29

I'd do it like MartinStettner but add an extra parameter for number of digits:

inline HexStruct hex(long n, int w=2)
{
  return HexStruct(n, w);
}
// Rest of implementation is left as an exercise for the reader

So you have two digits by default but can set four, eight, or whatever if you want to.

eg.

int main()
{
  short a = 3142;
  std:cout << hex(a,4) << std::endl;
}

It may seem like overkill but as Bjarne said: "libraries should be easy to use, not easy to write".

查看更多
Anthone
6楼-- · 2019-01-03 13:30

I would suggest:

std::cout << setbase(16) << 32;

Taken from: http://www.cprogramming.com/tutorial/iomanip.html

查看更多
劳资没心,怎么记你
7楼-- · 2019-01-03 13:30

I realize this is an old question, but its also a top Google result in searching for a solution to a very similar problem I have, which is the desire to implement arbitrary integer to hex string conversions within a template class. My end goal was actually a Gtk::Entry subclass template that would allow editing various integer widths in hex, but that's beside the point.

This combines the unary operator+ trick with std::make_unsigned from <type_traits> to prevent the problem of sign-extending negative int8_t or signed char values that occurs in this answer

Anyway, I believe this is more succinct than any other generic solution. It should work for any signed or unsigned integer types, and throws a compile-time error if you attempt to instantiate the function with any non-integer types.

template < 
  typename T,
  typename = typename std::enable_if<std::is_integral<T>::value, T>::type
>
std::string toHexString(const T v)
{ 
  std::ostringstream oss;
  oss << std::hex << +((typename std::make_unsigned<T>::type)v);
  return oss.str();
}

Some example usage:

int main(int argc, char**argv)
{
  int16_t val;
  // Prints 'ff' instead of "ffffffff". Unlike the other answer using the '+'
  // operator to extend sizeof(char) int types to int/unsigned int
  std::cout << toHexString(int8_t(-1)) << std::endl;

  // Works with any integer type
  std::cout << toHexString(int16_t(0xCAFE)) << std::endl;

  // You can use setw and setfill with strings too -OR- 
  // the toHexString could easily have parameters added to do that.
  std::cout << std::setw(8) << std::setfill('0') << 
    toHexString(int(100)) << std::endl;
  return 0;
}

Update: Alternatively, if you don't like the idea of the ostringstream being used, you can combine the templating and unary operator trick with the accepted answer's struct-based solution for the following. Note that here, I modified the template by removing the check for integer types. The make_unsigned usage might be enough for compile time type safety guarantees.

template <typename T>
struct HexValue 
{
  T value;
  HexValue(T _v) : value(_v) { }
};

template <typename T>
inline std::ostream& operator<<(std::ostream& o, const HexValue<T>& hs)
{
  return o << std::hex << +((typename std::make_unsigned<T>::type) hs.value);
}

template <typename T>
const HexValue<T> toHex(const T val)
{
  return HexValue<T>(val);
}

// Usage:
std::cout << toHex(int8_t(-1)) << std::endl;
查看更多
登录 后发表回答