I have removed all the storylines for this question.
Q.
You are given N numbers. You have to find 2 equal sum sub-sequences, with maximum sum. You don't necessarily need to use all numbers.
Eg 1:-
5
1 2 3 4 1
Sub-sequence 1 : 2 3 // sum = 5
Sub-sequence 2 : 4 1 // sum = 5
Possible Sub-sequences with equal sum are
{1,2} {3} // sum = 3
{1,3} {4} // sum = 4
{2,3} {4,1} // sum = 5
Out of which 5 is the maximum sum.
Eg 2:-
6
1 2 4 5 9 1
Sub-sequence 1 : 2 4 5 // sum = 11
Sub-sequence 2 : 1 9 1 // sum = 11
The maximum sum you can get is 11
Constraints:
5 <= N <= 50
1<= number <=1000
sum of all numbers is <= 1000
Important: Only <iostream> can be used. No STLs.
N numbers are unsorted.
If array is not possible to split, print 0.
Number of function stacks is limited. ie your recursive/memoization solution won't work.
Approach 1:
I tried a recursive approach something like the below:
#include <iostream>
using namespace std;
bool visited[51][1001][1001];
int arr[51];
int max_height=0;
int max_height_idx=0;
int N;
void recurse( int idx, int sum_left, int sum_right){
if(sum_left == sum_right){
if(sum_left > max_height){
max_height = sum_left;
max_height_idx = idx;
}
}
if(idx>N-1)return ;
if(visited[idx][sum_left][sum_right]) return ;
recurse( idx+1, sum_left+arr[idx], sum_right);
recurse( idx+1, sum_left , sum_right+arr[idx]);
recurse( idx+1, sum_left , sum_right);
visited[idx][sum_left][sum_right]=true;
/*
We could reduce the function calls, by check the visited condition before calling the function.
This could reduce stack allocations for function calls. For simplicity I have not checking those conditions before function calls.
Anyways, this recursive solution would get time out. No matter how you optimize it.
Btw, there are T testcases. For simplicity, removed that constraint.
*/
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin>>N;
for(int i=0; i<N; i++)
cin>>arr[i];
recurse(0,0,0);
cout<< max_height <<"\n";
}
NOTE:
Passes test-cases. But time out.
Approach 2:
I also tried, taking advantage of constraints.
Every number has 3 possible choice:
1. Be in sub-sequence 1
2. Be in sub-sequence 2
3. Be in neither of these sub-sequences
So
1. Be in sub-sequence 1 -> sum + 1*number
2. Be in sub-sequence 2 -> sum + -1*number
3. None -> sum
Maximum sum is in range -1000 to 1000.
So dp[51][2002] could be used to save the maximum positive sum achieved so far (ie till idx).
CODE:
#include <iostream>
using namespace std;
int arr[51];
int N;
int dp[51][2002];
int max3(int a, int b, int c){
return max(a,max(b,c));
}
int max4(int a, int b, int c, int d){
return max(max(a,b),max(c,d));
}
int recurse( int idx, int sum){
if(sum==0){
// should i perform anything here?
}
if(idx>N-1){
return 0;
}
if( dp[idx][sum+1000] ){
return dp[idx][sum+1000];
}
return dp[idx][sum+1000] = max3 (
arr[idx] + recurse( idx+1, sum + arr[idx]),
0 + recurse( idx+1, sum - arr[idx]),
0 + recurse( idx+1, sum )
) ;
/*
This gives me a wrong output.
4
1 3 5 4
*/
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin>>N;
for(int i=0; i<N; i++)
cin>>arr[i];
cout<< recurse(0,0) <<"\n";
}
The above code gives me wrong answer. Kindly help me with solving/correcting this memoization.
Also open to iterative approach for the same.
Idea of your second approach is correct, it's basically a reduction to the knapsack problem. However, it looks like your code lacks clear contract: what the
recurse
function is supposed to do.Here is my suggestion:
int recurse(int idx, int sum)
distributes elements on positionsidx..n-1
into three multisetsA
,B
,C
such thatsum+sum(A)-sum(B)=0
and returns maximal possiblesum(A)
,-inf
otherwise (here-inf
is some hardcoded constant which serves as a "marker" of no answer; there are some restrictions on it, I suggest-inf == -1000
).Now you're to write a recursive backtracking using that contract and then add memoization. Voila—you've got a dynamic programming solution.
In recursive backtracking we have two distinct situations:
idx == n
. In that case, we should check that our condition holds (sum + sum(A) - sum(B) == 0
, i.e.sum == 0
) and return the answer. Ifsum == 0
, then the answer is 0. However, ifsum != 0
, then there is no answer and we should return something which will never be chosen as the answer, unless there are no answer for the whole problem. As we modify returning value ofrecurse
and do not want extraif
s, it cannot be simply zero or even-1
; it should be a number which, when modified, still remains "the worst answer ever". The biggest modification we can make is to add all numbers to the resulting value, hence we should choose something less or equal to negative maximal sum of numbers (i.e.-1000
), as existing answers are always strictly positive, and that fictive answer will always be non-positive.A
,B
orC
. Make the choice and choose the best answer among three options. Answers are calculated recursively.Here is my implementation:
State is not updated in Approach 1. Change the last line of recurse
to
Also memset the visited array to false before calling recurse from main.