How can one simplify the part of speech tags returned by Stanford's French POS tagger? It is fairly easy to read an English sentence into NLTK, find each word's part of speech, then use map_tag() to simplify the tag set:
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
from nltk.tag.stanford import POSTagger
from nltk.tokenize import word_tokenize
from nltk.tag import map_tag
#set java_home path from within script. Run os.getenv("JAVA_HOME") to test java_home
os.environ["JAVA_HOME"] = "C:\\Program Files\\Java\\jdk1.7.0_25\\bin"
english = u"the whole earth swarms with living beings, every plant, every grain and leaf, supports the life of thousands."
path_to_english_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\english-bidirectional-distsim.tagger"
path_to_jar = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\stanford-postagger.jar"
#define english and french taggers
english_tagger = POSTagger(path_to_english_model, path_to_jar, encoding="utf-8")
#each tuple in list_of_english_pos_tuples = (word, pos)
list_of_english_pos_tuples = english_tagger.tag(word_tokenize(english))
simplified_pos_tags_english = [(word, map_tag('en-ptb', 'universal', tag)) for word, tag in list_of_english_pos_tuples]
print simplified_pos_tags_english
#output = [(u'the', u'DET'), (u'whole', u'ADJ'), (u'earth', u'NOUN'), (u'swarms', u'NOUN'), (u'with', u'ADP'), (u'living', u'NOUN'), (u'beings', u'NOUN'), (u',', u'.'), (u'every', u'DET'), (u'plant', u'NOUN'), (u',', u'.'), (u'every', u'DET'), (u'grain', u'NOUN'), (u'and', u'CONJ'), (u'leaf', u'NOUN'), (u',', u'.'), (u'supports', u'VERB'), (u'the', u'DET'), (u'life', u'NOUN'), (u'of', u'ADP'), (u'thousands', u'NOUN'), (u'.', u'.')]
But I'm not sure how to map the French tags returned by the following code to the universal tagset:
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
from nltk.tag.stanford import POSTagger
from nltk.tokenize import word_tokenize
from nltk.tag import map_tag
#set java_home path from within script. Run os.getenv("JAVA_HOME") to test java_home
os.environ["JAVA_HOME"] = "C:\\Program Files\\Java\\jdk1.7.0_25\\bin"
french = u"Chaque plante, chaque graine, chaque particule de matière organique contient des milliers d'atomes animés."
path_to_french_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\french.tagger"
path_to_jar = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\stanford-postagger.jar"
french_tagger = POSTagger(path_to_french_model, path_to_jar, encoding="utf-8")
list_of_french_pos_tuples = french_tagger.tag(word_tokenize(french))
#up to this point all is well, but I'm not sure how to successfully create a simplified pos tagset with the French tuples
simplified_pos_tags_french = [(word, map_tag('SOME_ARGUMENT', 'universal', tag)) for word, tag in list_of_french_pos_tuples]
print simplified_pos_tags_french
Does anyone know how to simplify the default tag set used by the french model in the Stanford POS tagger? I would be grateful for any insights others can offer on this question.
I ended up just manually mapping Stanford's POS tags to the universal tag set. For what it's worth, the snippet above was part of a slightly larger workflow aimed at measuring syntactic similarity between French and English sentences. Here's the full code, in case it helps others: