This could be a classic case of "you're doing it wrong", but all of my searching to date hasn't warranted any help.
Here's my scenario:
I'm using an albersUSA map projection in conjunction with the national and county GeoJson files to draw everything.
I also have a self created "cities" file that contains major cities for each state. The coordinates are accurate and everything looks good.
When a user clicks on a given state, I hide all state shapes and then calculate the transform needed to get the county shapes for that state to fit within my viewport. I then apply that transform to all the necessary county shapes in order to get the "zoomed" view. My code is as follows:
function CalculateTransform(objectPath)
{
var results = '';
// Define bounds/points of viewport
var mapDimensions = getMapViewportDimensions();
var baseWidth = mapDimensions[0];
var baseHeight = mapDimensions[1];
var centerX = baseWidth / 2;
var centerY = baseHeight / 2;
// Get bounding box of object path and calculate centroid and zoom factor
// based on viewport.
var bbox = objectPath.getBBox();
var centroid = [bbox.x + bbox.width / 2, bbox.y + bbox.height / 2];
var zoomScaleFactor = baseHeight / bbox.height;
var zoomX = -centroid[0];
var zoomY = -centroid[1];
// If the width of the state is greater than the height, scale by
// that property instead so that state will still fit in viewport.
if (bbox.width > bbox.height) {
zoomScaleFactor = baseHeight / bbox.width;
}
// Calculate how far to move the object path from it's current position to
// the center of the viewport.
var augmentX = -(centroid[0] - centerX);
var augmentY = -(centroid[1] - centerY);
// Our transform logic consists of:
// 1. Move the state to the center of the screen.
// 2. Move the state based on our anticipated scale.
// 3. Scale the state.
// 4. Move the state back to accomodate for the scaling.
var transform = "translate(" + (augmentX) + "," + (augmentY) + ")" +
"translate(" + (-zoomX) + "," + (-zoomY) + ")" +
"scale(" + zoomScaleFactor + ")" +
"translate(" + (zoomX) + "," + (zoomY) + ")";
return results;
}
...and the binding function
// Load county data for the state specified.
d3.json(jsonUrl, function (json) {
if (json === undefined || json == null || json.features.length == 0)
{
logging.error("Failed to retrieve county structure data.");
showMapErrorMessage("Unable to retrieve county structure data.");
return false;
}
else
{
counties.selectAll("path")
.data(json.features)
.enter()
.append("path")
.attr("id", function (d, i) {
return "county_" + d.properties.GEO_ID
})
.attr("data-id", function (d, i) { return d.properties.GEO_ID })
.attr("data-name", function (d, i) { return countyLookup[d.properties.GEO_ID] })
.attr("data-stateid", function (d, i) { return d.properties.STATE })
.attr("d", path);
// Show all counties for state specified and apply zoom transform.
d3.selectAll(countySelector).attr("visibility", "visible");
d3.selectAll(countySelector).attr("transform", stateTransform);
// Show all cities for the state specified and apply zoom transform
d3.selectAll(citySelector).attr("visibility", "visible");
d3.selectAll(citySelector).attr("transform", stateTransform);
}
});
This works fine here, except for really small states, the zoom factor is much larger, and the circles get distored.
Is there a way to force the size of the points to be a fixed size (say a 15px radius) even after the transform occurs?
For things you don't want to scale, just make them divided by 'scale' . In my case,
This is happening because you are setting a scale transform instead of scaling the positions. You can see the difference here Basically it is the difference between:
and
With mapping probably you best solution is to compute your offset and scale as you do and then add them into your projection function - you want to directly modify the post-projection x and y values. If you update your projection function properly you should not have to do anything else to apply the appropriate zoom to your map.