If I want to generate a bunch of points distributed uniformly around a circle, I can do this (python):
r = 5 #radius
n = 20 #points to generate
circlePoints = [
(r * math.cos(theta), r * math.sin(theta))
for theta in (math.pi*2 * i/n for i in range(n))
]
However, the same logic doesn't generate uniform points on an ellipse: points on the "ends" are more closely spaced than points on the "sides".
r1 = 5
r2 = 10
n = 20 #points to generate
ellipsePoints = [
(r1 * math.cos(theta), r2 * math.sin(theta))
for theta in (math.pi*2 * i/n for i in range(n))
]
Is there an easy way to generate equally spaced points around an ellipse?
I'm sure this thread is long dead by now, but I just came across this issue and this was the closest that came to a solution.
I started with Dave's answer here, but I noticed that it wasn't really answering the poster's question. It wasn't dividing the ellipse equally by arc lengths, but by angle.
Anyway, I made some adjustments to his (awesome) work to get the ellipse to divide equally by arc length instead (written in C# this time). If you look at the code, you'll see some of the same stuff -
From my answer in BSE here .
I add it in stackoverflow as it is a different approach which does not rely on a fixed iteration steps but rely on a convergence of the distances between the points, to the mean distance.
So the calculation is shorter as it depends only on the wanted vertices amount and on the precision to reach (about 6 iterations for less than 0.01%).
The principle is :
0/ First step : calculate the points normally using a * cos(t) and b * sin(t)
1/ Calculate the lengths between vertices
2/ Adjust the angles variations depending on the gap between each distance to the mean distance
3/ Reposition the points
4/ Exit when the wanted precision is reached or return to 1/
There is working MATLAB code available here. I replicate that below in case that link ever goes dead. Credits are due to the original author.
This code assumes that the major axis is a line segment from
(x1, y1)
to(x2, y2)
ande
is the eccentricity of the ellipse.A possible (numerical) calculation can look as follows:
This is a simple numerical integration scheme. If you need better accuracy you might also use any other integration method.
This is an old thread, but since I am seeking the same task of creating evenly spaced points along and ellipse and was not able to find an implementation, I offer this Java code that implements the pseudo code of Howard:
You have to calculate the perimeter, then divide it into equal length arcs. The length of an arc of an ellipse is an elliptic integral and cannot be written in closed form so you need numerical computation.
The article on ellipses on wolfram gives you the formula needed to do this, but this is going to be ugly.