How slow are Java exceptions?

2018-12-31 04:25发布

Question: Is exception handling in Java actually slow?

Conventional wisdom, as well as a lot of Google results, says that exceptional logic shouldn't be used for normal program flow in Java. Two reasons are usually given,

  1. it is really slow - even an order of magnitude slower than regular code (the reasons given vary),

and

  1. it is messy because people expect only errors to be handled in exceptional code.

This question is about #1.

As an example, this page describes Java exception handling as "very slow" and relates the slowness to the creation of the exception message string - "this string is then used in creating the exception object that is thrown. This is not fast." The article Effective Exception Handling in Java says that "the reason for this is due to the object creation aspect of exception handling, which thereby makes throwing exceptions inherently slow". Another reason out there is that the stack trace generation is what slows it down.

My testing (using Java 1.6.0_07, Java HotSpot 10.0, on 32 bit Linux), indicates that exception handling is no slower than regular code. I tried running a method in a loop that executes some code. At the end of the method, I use a boolean to indicate whether to return or throw. This way the actual processing is the same. I tried running the methods in different orders and averaging my test times, thinking it may have been the JVM warming up. In all my tests, the throw was at least as fast as the return, if not faster (up to 3.1% faster). I am completely open to the possibility that my tests were wrong, but I haven't seen anything out there in the way of the code sample, test comparisons, or results in the last year or two that show exception handling in Java to actually be slow.

What leads me down this path was an API I needed to use that threw exceptions as part of normal control logic. I wanted to correct them in their usage, but now I may not be able to. Will I instead have to praise them on their forward thinking?

In the paper Efficient Java exception handling in just-in-time compilation, the authors suggest that the presence of exception handlers alone, even if no exceptions are thrown, is enough to prevent the JIT compiler from optimizing the code properly, thus slowing it down. I haven't tested this theory yet.

17条回答
余生无你
2楼-- · 2018-12-31 05:03

Aleksey Shipilëv did a very thorough analysis in which he benchmarks Java exceptions under various combinations of conditions:

  • Newly created exceptions vs pre-created exceptions
  • Stack trace enabled vs disabled
  • Stack trace requested vs never requested
  • Caught at the top level vs rethrown at every level vs chained/wrapped at every level
  • Various levels of Java call stack depth
  • No inlining optimizations vs extreme inlining vs default settings
  • User-defined fields read vs not read

He also compares them to the performance of checking an error code at various levels of error frequency.

The conclusions (quoted verbatim from his post) were:

  1. Truly exceptional exceptions are beautifully performant. If you use them as designed, and only communicate the truly exceptional cases among the overwhelmingly large number of non-exceptional cases handled by regular code, then using exceptions is the performance win.

  2. The performance costs of exceptions have two major components: stack trace construction when Exception is instantiated and stack unwinding during Exception throw.

  3. Stack trace construction costs are proportional to stack depth at the moment of exception instantiation. That is already bad because who on Earth knows the stack depth at which this throwing method would be called? Even if you turn off the stack trace generation and/or cache the exceptions, you can only get rid of this part of the performance cost.

  4. Stack unwinding costs depend on how lucky we are with bringing the exception handler closer in the compiled code. Carefully structuring the code to avoid deep exception handlers lookup is probably helping us get luckier.

  5. Should we eliminate both effects, the performance cost of exceptions is that of the local branch. No matter how beautiful it sounds, that does not mean you should use Exceptions as the usual control flow, because in that case you are at the mercy of optimizing compiler! You should only use them in truly exceptional cases, where the exception frequency amortizes the possible unlucky cost of raising the actual exception.

  6. The optimistic rule-of-thumb seems to be 10^-4 frequency for exceptions is exceptional enough. That, of course, depends on the heavy-weights of the exceptions themselves, the exact actions taken in exception handlers, etc.

The upshot is that when an exception isn't thrown, you don't pay a cost, so when the exceptional condition is sufficiently rare exception handling is faster than using an if every time. The full post is very much worth a read.

查看更多
梦醉为红颜
3楼-- · 2018-12-31 05:05

Even if throwing an exception isn't slow, it's still a bad idea to throw exceptions for normal program flow. Used this way it is analogous to a GOTO...

I guess that doesn't really answer the question though. I'd imagine that the 'conventional' wisdom of throwing exceptions being slow was true in earlier java versions (< 1.4). Creating an exception requires that the VM create the entire stack trace. A lot has changed since then in the VM to speed things up and this is likely one area that has been improved.

查看更多
人间绝色
4楼-- · 2018-12-31 05:05

Exception performance in Java and C# leaves much to be desired.

As programmers this forces us to live by the rule "exceptions should be caused infrequently", simply for practical performance reasons.

However, as computer scientists, we should rebel against this problematic state. The person authoring a function often has no idea how often it will be called, or whether success or failure is more likely. Only the caller has this information. Trying to avoid exceptions leads to unclear API idoms where in some cases we have only clean-but-slow exception versions, and in other cases we have fast-but-clunky return-value errors, and in still other cases we end up with both. The library implementor may have to write and maintain two versions of APIs, and the caller has to decide which of two versions to use in each situation.

This is kind of a mess. If exceptions had better performance, we could avoid these clunky idioms and use exceptions as they were meant to be used... as a structured error return facility.

I'd really like to see exception mechanisms implemented using techniques closer to return-values, so we could have performance closer to return values.. since this is what we revert to in performance sensitive code.

Here is a code-sample that compares exception performance to error-return-value performance.

public class TestIt {

int value;


public int getValue() {
    return value;
}

public void reset() {
    value = 0;
}

public boolean baseline_null(boolean shouldfail, int recurse_depth) {
    if (recurse_depth <= 0) {
        return shouldfail;
    } else {
        return baseline_null(shouldfail,recurse_depth-1);
    }
}

public boolean retval_error(boolean shouldfail, int recurse_depth) {
    if (recurse_depth <= 0) {
        if (shouldfail) {
            return false;
        } else {
            return true;
        }
    } else {
        boolean nested_error = retval_error(shouldfail,recurse_depth-1);
        if (nested_error) {
            return true;
        } else {
            return false;
        }
    }
}

public void exception_error(boolean shouldfail, int recurse_depth) throws Exception {
    if (recurse_depth <= 0) {
        if (shouldfail) {
            throw new Exception();
        }
    } else {
        exception_error(shouldfail,recurse_depth-1);
    }

}

public static void main(String[] args) {
    int i;
    long l;
    TestIt t = new TestIt();
    int failures;

    int ITERATION_COUNT = 100000000;


    // (0) baseline null workload
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                t.baseline_null(shoulderror,recurse_depth);
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("baseline: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);
        }
    }


    // (1) retval_error
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                if (!t.retval_error(shoulderror,recurse_depth)) {
                    failures++;
                }
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("retval_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);
        }
    }

    // (2) exception_error
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                try {
                    t.exception_error(shoulderror,recurse_depth);
                } catch (Exception e) {
                    failures++;
                }
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("exception_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);              
        }
    }
}

}

And here are the results:

baseline: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 683 ms
baseline: recurse_depth 2, exception_freqeuncy 0.25 (0), time elapsed 790 ms
baseline: recurse_depth 2, exception_freqeuncy 0.5 (0), time elapsed 768 ms
baseline: recurse_depth 2, exception_freqeuncy 0.75 (0), time elapsed 749 ms
baseline: recurse_depth 2, exception_freqeuncy 1.0 (0), time elapsed 731 ms
baseline: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 923 ms
baseline: recurse_depth 5, exception_freqeuncy 0.25 (0), time elapsed 971 ms
baseline: recurse_depth 5, exception_freqeuncy 0.5 (0), time elapsed 982 ms
baseline: recurse_depth 5, exception_freqeuncy 0.75 (0), time elapsed 947 ms
baseline: recurse_depth 5, exception_freqeuncy 1.0 (0), time elapsed 937 ms
baseline: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1154 ms
baseline: recurse_depth 8, exception_freqeuncy 0.25 (0), time elapsed 1149 ms
baseline: recurse_depth 8, exception_freqeuncy 0.5 (0), time elapsed 1133 ms
baseline: recurse_depth 8, exception_freqeuncy 0.75 (0), time elapsed 1117 ms
baseline: recurse_depth 8, exception_freqeuncy 1.0 (0), time elapsed 1116 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 742 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 743 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 734 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 723 ms
retval_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 728 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 920 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 1121   ms
retval_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 1037 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 1141   ms
retval_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 1130 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1218 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 1334  ms
retval_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 1478 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 1637 ms
retval_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 1655 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 726 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 17487   ms
exception_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 33763   ms
exception_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 67367   ms
exception_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 66990 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 924 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 23775  ms
exception_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 46326 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 91707 ms
exception_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 91580 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1144 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 30440 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 59116   ms
exception_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 116678 ms
exception_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 116477 ms

Checking and propagating return-values does add some cost vs the baseline-null call, and that cost is proportional to call-depth. At a call-chain depth of 8, the error-return-value checking version was about 27% slower than the basline version which did not check return values.

Exception performance, in comparison, is not a function of call-depth, but of exception frequency. However, the degredation as exception frequency increases is much more dramatic. At only a 25% error frequency, the code ran 24-TIMES slower. At an error frequency of 100%, the exception version is almost 100-TIMES slower.

This suggests to me that perhaps are making the wrong tradeoffs in our exception implementations. Exceptions could be faster, either by avoiding costly stalk-walks, or by outright turning them into compiler supported return-value checking. Until they do, we're stuck avoiding them when we want our code to run fast.

查看更多
姐姐魅力值爆表
5楼-- · 2018-12-31 05:05

Great post about exception performance is:

https://shipilev.net/blog/2014/exceptional-performance/

Instantiating vs reusing existing, with stack trace and without, etc:

Benchmark                            Mode   Samples         Mean   Mean error  Units

dynamicException                     avgt        25     1901.196       14.572  ns/op
dynamicException_NoStack             avgt        25       67.029        0.212  ns/op
dynamicException_NoStack_UsedData    avgt        25       68.952        0.441  ns/op
dynamicException_NoStack_UsedStack   avgt        25      137.329        1.039  ns/op
dynamicException_UsedData            avgt        25     1900.770        9.359  ns/op
dynamicException_UsedStack           avgt        25    20033.658      118.600  ns/op

plain                                avgt        25        1.259        0.002  ns/op
staticException                      avgt        25        1.510        0.001  ns/op
staticException_NoStack              avgt        25        1.514        0.003  ns/op
staticException_NoStack_UsedData     avgt        25        4.185        0.015  ns/op
staticException_NoStack_UsedStack    avgt        25       19.110        0.051  ns/op
staticException_UsedData             avgt        25        4.159        0.007  ns/op
staticException_UsedStack            avgt        25       25.144        0.186  ns/op

Depending on depth of stack trace:

Benchmark        Mode   Samples         Mean   Mean error  Units

exception_0000   avgt        25     1959.068       30.783  ns/op
exception_0001   avgt        25     1945.958       12.104  ns/op
exception_0002   avgt        25     2063.575       47.708  ns/op
exception_0004   avgt        25     2211.882       29.417  ns/op
exception_0008   avgt        25     2472.729       57.336  ns/op
exception_0016   avgt        25     2950.847       29.863  ns/op
exception_0032   avgt        25     4416.548       50.340  ns/op
exception_0064   avgt        25     6845.140       40.114  ns/op
exception_0128   avgt        25    11774.758       54.299  ns/op
exception_0256   avgt        25    21617.526      101.379  ns/op
exception_0512   avgt        25    42780.434      144.594  ns/op
exception_1024   avgt        25    82839.358      291.434  ns/op

For other details (including x64 assembler from JIT) read original blog post.

That mean Hibernate/Spring/etc-EE-shit are slow because of exceptions (xD) and rewriting app control flow away from exceptions (replace it with continure / break and returning boolean flags like in C from method call) improve performance of your application 10x-100x, depending on how often you throws them ))

查看更多
心情的温度
6楼-- · 2018-12-31 05:08

Just compare let's say Integer.parseInt to the following method, which just returns a default value in the case of unparseable data instead of throwing an Exception:

  public static int parseUnsignedInt(String s, int defaultValue) {
    final int strLength = s.length();
    if (strLength == 0)
      return defaultValue;
    int value = 0;
    for (int i=strLength-1; i>=0; i--) {
      int c = s.charAt(i);
      if (c > 47 && c < 58) {
        c -= 48;
        for (int j=strLength-i; j!=1; j--)
          c *= 10;
        value += c;
      } else {
        return defaultValue;
      }
    }
    return value < 0 ? /* übergebener wert > Integer.MAX_VALUE? */ defaultValue : value;
  }

As long as you apply both methods to "valid" data, they both will work at approximately the same rate (even although Integer.parseInt manages to handle more complex data). But as soon as you try to parse invalid data (e.g. to parse "abc" 1.000.000 times), the difference in performance should be essential.

查看更多
登录 后发表回答