Simple state machine example in C#?

2019-01-03 07:23发布

Update:

Again thanks for the examples, they have been very helpful and with the following I don't mean to take anything away from them.

Aren't the currently given examples, as far as I understand them & state-machines, only half of what we usually understand by a state-machine?
In the sense that the examples do change state but that's only represented by changing the value of a variable (and allowing different value- changes in different states), while usually a state machine should also change it's behavior, and behavior not (only) in the sense of allowing different value changes for a variable depending on state, but in the sense of allowing different methods to be executed for different states.

Or do I have a misconception of state machines and their common use?

Best regards


Original question:

I found this discussion about state machines & iterator blocks in c# and tools to create state machines and what not for C#, so I found a lot of abstract stuff but as a noob all of this is a little confusing.

So it would be great if someone could provide a C# source code-example that realizes a simple state machine with perhaps 3,4 states, just to get the gist of it.


18条回答
再贱就再见
2楼-- · 2019-01-03 07:43

There are 2 popular state machine packages in NuGet.

Appccelerate.StateMachine (13.6K downloads + 3.82K of legacy version (bbv.Common.StateMachine))

StateMachineToolkit (1.56K downloads)

The Appccelerate lib has good documentation, but it does not support .NET 4, so I chose StateMachineToolkit for my project.

查看更多
你好瞎i
3楼-- · 2019-01-03 07:44

Im posting annother answer here as this is state machines from a different perspective; very visual.

My origianl answer is clasic imperitive code. I think its quite visual as code goes becuase of the array which makes visualising the state machine simple. The downside is you have to write all this. Remos's answer aleviates the effort of writing the boiler-plate code but is far less visual. There is the third alternative; really drawing the state machine.

If you are using .NET and can target version 4 of the run time then you have the option of using workflow's state machine activities. These in essence let you draw the state machine (much as in Juliet's diagram) and have the WF runtime execute it for you.

See the MSDN article Building State Machines with Windows Workflow Foundation for more details, and this CodePlex site for the latest version.

Thats the option I would always prefer when targeting .NET because its easy to see, change and explain to non programmers; pictures are worth a thousand words as they say!

查看更多
我只想做你的唯一
4楼-- · 2019-01-03 07:45

I've just contributed this:

https://code.google.com/p/ysharp/source/browse/#svn%2Ftrunk%2FStateMachinesPoC

Here's one of the examples demoing direct and indirect sending of commands, with states as IObserver(of signal), thus responders to a signal source, IObservable(of signal):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Test
{
    using Machines;

    public static class WatchingTvSampleAdvanced
    {
        // Enum type for the transition triggers (instead of System.String) :
        public enum TvOperation { Plug, SwitchOn, SwitchOff, Unplug, Dispose }

        // The state machine class type is also used as the type for its possible states constants :
        public class Television : NamedState<Television, TvOperation, DateTime>
        {
            // Declare all the possible states constants :
            public static readonly Television Unplugged = new Television("(Unplugged TV)");
            public static readonly Television Off = new Television("(TV Off)");
            public static readonly Television On = new Television("(TV On)");
            public static readonly Television Disposed = new Television("(Disposed TV)");

            // For convenience, enter the default start state when the parameterless constructor executes :
            public Television() : this(Television.Unplugged) { }

            // To create a state machine instance, with a given start state :
            private Television(Television value) : this(null, value) { }

            // To create a possible state constant :
            private Television(string moniker) : this(moniker, null) { }

            private Television(string moniker, Television value)
            {
                if (moniker == null)
                {
                    // Build the state graph programmatically
                    // (instead of declaratively via custom attributes) :
                    Handler<Television, TvOperation, DateTime> stateChangeHandler = StateChange;
                    Build
                    (
                        new[]
                        {
                            new { From = Television.Unplugged, When = TvOperation.Plug, Goto = Television.Off, With = stateChangeHandler },
                            new { From = Television.Unplugged, When = TvOperation.Dispose, Goto = Television.Disposed, With = stateChangeHandler },
                            new { From = Television.Off, When = TvOperation.SwitchOn, Goto = Television.On, With = stateChangeHandler },
                            new { From = Television.Off, When = TvOperation.Unplug, Goto = Television.Unplugged, With = stateChangeHandler },
                            new { From = Television.Off, When = TvOperation.Dispose, Goto = Television.Disposed, With = stateChangeHandler },
                            new { From = Television.On, When = TvOperation.SwitchOff, Goto = Television.Off, With = stateChangeHandler },
                            new { From = Television.On, When = TvOperation.Unplug, Goto = Television.Unplugged, With = stateChangeHandler },
                            new { From = Television.On, When = TvOperation.Dispose, Goto = Television.Disposed, With = stateChangeHandler }
                        },
                        false
                    );
                }
                else
                    // Name the state constant :
                    Moniker = moniker;
                Start(value ?? this);
            }

            // Because the states' value domain is a reference type, disallow the null value for any start state value : 
            protected override void OnStart(Television value)
            {
                if (value == null)
                    throw new ArgumentNullException("value", "cannot be null");
            }

            // When reaching a final state, unsubscribe from all the signal source(s), if any :
            protected override void OnComplete(bool stateComplete)
            {
                // Holds during all transitions into a final state
                // (i.e., stateComplete implies IsFinal) :
                System.Diagnostics.Debug.Assert(!stateComplete || IsFinal);

                if (stateComplete)
                    UnsubscribeFromAll();
            }

            // Executed before and after every state transition :
            private void StateChange(IState<Television> state, ExecutionStep step, Television value, TvOperation info, DateTime args)
            {
                // Holds during all possible transitions defined in the state graph
                // (i.e., (step equals ExecutionStep.LeaveState) implies (not state.IsFinal))
                System.Diagnostics.Debug.Assert((step != ExecutionStep.LeaveState) || !state.IsFinal);

                // Holds in instance (i.e., non-static) transition handlers like this one :
                System.Diagnostics.Debug.Assert(this == state);

                switch (step)
                {
                    case ExecutionStep.LeaveState:
                        var timeStamp = ((args != default(DateTime)) ? String.Format("\t\t(@ {0})", args) : String.Empty);
                        Console.WriteLine();
                        // 'value' is the state value that we are transitioning TO :
                        Console.WriteLine("\tLeave :\t{0} -- {1} -> {2}{3}", this, info, value, timeStamp);
                        break;
                    case ExecutionStep.EnterState:
                        // 'value' is the state value that we have transitioned FROM :
                        Console.WriteLine("\tEnter :\t{0} -- {1} -> {2}", value, info, this);
                        break;
                    default:
                        break;
                }
            }

            public override string ToString() { return (IsConstant ? Moniker : Value.ToString()); }
        }

        public static void Run()
        {
            Console.Clear();

            // Create a signal source instance (here, a.k.a. "remote control") that implements
            // IObservable<TvOperation> and IObservable<KeyValuePair<TvOperation, DateTime>> :
            var remote = new SignalSource<TvOperation, DateTime>();

            // Create a television state machine instance (automatically set in a default start state),
            // and make it subscribe to a compatible signal source, such as the remote control, precisely :
            var tv = new Television().Using(remote);
            bool done;

            // Always holds, assuming the call to Using(...) didn't throw an exception (in case of subscription failure) :
            System.Diagnostics.Debug.Assert(tv != null, "There's a bug somewhere: this message should never be displayed!");

            // As commonly done, we can trigger a transition directly on the state machine :
            tv.MoveNext(TvOperation.Plug, DateTime.Now);

            // Alternatively, we can also trigger transitions by emitting from the signal source / remote control
            // that the state machine subscribed to / is an observer of :
            remote.Emit(TvOperation.SwitchOn, DateTime.Now);
            remote.Emit(TvOperation.SwitchOff);
            remote.Emit(TvOperation.SwitchOn);
            remote.Emit(TvOperation.SwitchOff, DateTime.Now);

            done =
                (
                    tv.
                        MoveNext(TvOperation.Unplug).
                        MoveNext(TvOperation.Dispose) // MoveNext(...) returns null iff tv.IsFinal == true
                    == null
                );

            remote.Emit(TvOperation.Unplug); // Ignored by the state machine thanks to the OnComplete(...) override above

            Console.WriteLine();
            Console.WriteLine("Is the TV's state '{0}' a final state? {1}", tv.Value, done);

            Console.WriteLine();
            Console.WriteLine("Press any key...");
            Console.ReadKey();
        }
    }
}

Note : this example is rather artificial and mostly meant to demo a number of orthogonal features. There should seldomly be a real need to implement the state value domain itself by a full blown class, using the CRTP ( see : http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern ) like this.

Here's for a certainly simpler and likely much more common implementation use case (using a simple enum type as the states value domain), for the same state machine, and with the same test case :

https://code.google.com/p/ysharp/source/browse/trunk/StateMachinesPoC/WatchingTVSample.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Test
{
    using Machines;

    public static class WatchingTvSample
    {
        public enum Status { Unplugged, Off, On, Disposed }

        public class DeviceTransitionAttribute : TransitionAttribute
        {
            public Status From { get; set; }
            public string When { get; set; }
            public Status Goto { get; set; }
            public object With { get; set; }
        }

        // State<Status> is a shortcut for / derived from State<Status, string>,
        // which in turn is a shortcut for / derived from State<Status, string, object> :
        public class Device : State<Status>
        {
            // Executed before and after every state transition :
            protected override void OnChange(ExecutionStep step, Status value, string info, object args)
            {
                if (step == ExecutionStep.EnterState)
                {
                    // 'value' is the state value that we have transitioned FROM :
                    Console.WriteLine("\t{0} -- {1} -> {2}", value, info, this);
                }
            }

            public override string ToString() { return Value.ToString(); }
        }

        // Since 'Device' has no state graph of its own, define one for derived 'Television' :
        [DeviceTransition(From = Status.Unplugged, When = "Plug", Goto = Status.Off)]
        [DeviceTransition(From = Status.Unplugged, When = "Dispose", Goto = Status.Disposed)]
        [DeviceTransition(From = Status.Off, When = "Switch On", Goto = Status.On)]
        [DeviceTransition(From = Status.Off, When = "Unplug", Goto = Status.Unplugged)]
        [DeviceTransition(From = Status.Off, When = "Dispose", Goto = Status.Disposed)]
        [DeviceTransition(From = Status.On, When = "Switch Off", Goto = Status.Off)]
        [DeviceTransition(From = Status.On, When = "Unplug", Goto = Status.Unplugged)]
        [DeviceTransition(From = Status.On, When = "Dispose", Goto = Status.Disposed)]
        public class Television : Device { }

        public static void Run()
        {
            Console.Clear();

            // Create a television state machine instance, and return it, set in some start state :
            var tv = new Television().Start(Status.Unplugged);
            bool done;

            // Holds iff the chosen start state isn't a final state :
            System.Diagnostics.Debug.Assert(tv != null, "The chosen start state is a final state!");

            // Trigger some state transitions with no arguments
            // ('args' is ignored by this state machine's OnChange(...), anyway) :
            done =
                (
                    tv.
                        MoveNext("Plug").
                        MoveNext("Switch On").
                        MoveNext("Switch Off").
                        MoveNext("Switch On").
                        MoveNext("Switch Off").
                        MoveNext("Unplug").
                        MoveNext("Dispose") // MoveNext(...) returns null iff tv.IsFinal == true
                    == null
                );

            Console.WriteLine();
            Console.WriteLine("Is the TV's state '{0}' a final state? {1}", tv.Value, done);

            Console.WriteLine();
            Console.WriteLine("Press any key...");
            Console.ReadKey();
        }
    }
}

'HTH

查看更多
你好瞎i
5楼-- · 2019-01-03 07:48

I would recommend state.cs. I personally used state.js (the JavaScript version) and am very happy with it. That C# version works in a similar way.

You instantiate states:

        // create the state machine
        var player = new StateMachine<State>( "player" );

        // create some states
        var initial = player.CreatePseudoState( "initial", PseudoStateKind.Initial );
        var operational = player.CreateCompositeState( "operational" );
        ...

You instantiate some transitions:

        var t0 = player.CreateTransition( initial, operational );
        player.CreateTransition( history, stopped );
        player.CreateTransition<String>( stopped, running, ( state, command ) => command.Equals( "play" ) );
        player.CreateTransition<String>( active, stopped, ( state, command ) => command.Equals( "stop" ) );

You define actions on states and transitions:

    t0.Effect += DisengageHead;
    t0.Effect += StopMotor;

And that's (pretty much) it. Look at the website for more information.

查看更多
我命由我不由天
6楼-- · 2019-01-03 07:49

It's useful to remember that state machines are an abstraction, and you don't need particular tools to create one, however tools can be useful.

You can for example realise a state machine with functions:

void Hunt(IList<Gull> gulls)
{
    if (gulls.Empty())
       return;

    var target = gulls.First();
    TargetAcquired(target, gulls);
}

void TargetAcquired(Gull target, IList<Gull> gulls)
{
    var balloon = new WaterBalloon(weightKg: 20);

    this.Cannon.Fire(balloon);

    if (balloon.Hit)
    {
       TargetHit(target, gulls);
    }
    else
       TargetMissed(target, gulls);
}

void TargetHit(Gull target, IList<Gull> gulls)
{
    Console.WriteLine("Suck on it {0}!", target.Name);
    Hunt(gulls);
}

void TargetMissed(Gull target, IList<Gull> gulls)
{
    Console.WriteLine("I'll get ya!");
    TargetAcquired(target, gulls);
}

This machine would hunt for gulls and try to hit them with water balloons. If it misses it will try firing one until it hits (could do with some realistic expectations ;)), otherwise it will gloat in the console. It continues to hunt until it's out of gulls to harass.

Each function corresponds to each state; the start and end (or accept) states are not shown. There are probably more states in there than modelled by the functions though. For example after firing the balloon the machine is really in another state than it was before it, but I decided this distinction was impractical to make.

A common way is to use classes to represent states, and then connect them in different ways.

查看更多
贼婆χ
7楼-- · 2019-01-03 07:49

I made this generic state machine out of Juliet's code. It's working awesome for me.

These are the benefits:

  • you can create new state machine in code with two enums TState and TCommand,
  • added struct TransitionResult<TState> to have more control over the output results of [Try]GetNext() methods
  • exposing nested class StateTransition only through AddTransition(TState, TCommand, TState) making it easier to work with it

Code:

public class StateMachine<TState, TCommand>
    where TState : struct, IConvertible, IComparable
    where TCommand : struct, IConvertible, IComparable
{
    protected class StateTransition<TS, TC>
        where TS : struct, IConvertible, IComparable
        where TC : struct, IConvertible, IComparable
    {
        readonly TS CurrentState;
        readonly TC Command;

        public StateTransition(TS currentState, TC command)
        {
            if (!typeof(TS).IsEnum || !typeof(TC).IsEnum)
            {
                throw new ArgumentException("TS,TC must be an enumerated type");
            }

            CurrentState = currentState;
            Command = command;
        }

        public override int GetHashCode()
        {
            return 17 + 31 * CurrentState.GetHashCode() + 31 * Command.GetHashCode();
        }

        public override bool Equals(object obj)
        {
            StateTransition<TS, TC> other = obj as StateTransition<TS, TC>;
            return other != null
                && this.CurrentState.CompareTo(other.CurrentState) == 0
                && this.Command.CompareTo(other.Command) == 0;
        }
    }

    private Dictionary<StateTransition<TState, TCommand>, TState> transitions;
    public TState CurrentState { get; private set; }

    protected StateMachine(TState initialState)
    {
        if (!typeof(TState).IsEnum || !typeof(TCommand).IsEnum)
        {
            throw new ArgumentException("TState,TCommand must be an enumerated type");
        }

        CurrentState = initialState;
        transitions = new Dictionary<StateTransition<TState, TCommand>, TState>();
    }

    /// <summary>
    /// Defines a new transition inside this state machine
    /// </summary>
    /// <param name="start">source state</param>
    /// <param name="command">transition condition</param>
    /// <param name="end">destination state</param>
    protected void AddTransition(TState start, TCommand command, TState end)
    {
        transitions.Add(new StateTransition<TState, TCommand>(start, command), end);
    }

    public TransitionResult<TState> TryGetNext(TCommand command)
    {
        StateTransition<TState, TCommand> transition = new StateTransition<TState, TCommand>(CurrentState, command);
        TState nextState;
        if (transitions.TryGetValue(transition, out nextState))
            return new TransitionResult<TState>(nextState, true);
        else
            return new TransitionResult<TState>(CurrentState, false);
    }

    public TransitionResult<TState> MoveNext(TCommand command)
    {
        var result = TryGetNext(command);
        if(result.IsValid)
        {
            //changes state
            CurrentState = result.NewState;
        }
        return result;
    }
}

This is the return type of TryGetNext method:

public struct TransitionResult<TState>
{
    public TransitionResult(TState newState, bool isValid)
    {
        NewState = newState;
        IsValid = isValid;
    }
    public TState NewState;
    public bool IsValid;
}

How to use:

This is how you can create a OnlineDiscountStateMachine from the generic class:

Define an enum OnlineDiscountState for its states and an enum OnlineDiscountCommand for its commands.

Define a class OnlineDiscountStateMachine derived from the generic class using those two enums

Derive the constructor from base(OnlineDiscountState.InitialState) so that the initial state is set to OnlineDiscountState.InitialState

Use AddTransition as many times as needed

public class OnlineDiscountStateMachine : StateMachine<OnlineDiscountState, OnlineDiscountCommand>
{
    public OnlineDiscountStateMachine() : base(OnlineDiscountState.Disconnected)
    {
        AddTransition(OnlineDiscountState.Disconnected, OnlineDiscountCommand.Connect, OnlineDiscountState.Connected);
        AddTransition(OnlineDiscountState.Disconnected, OnlineDiscountCommand.Connect, OnlineDiscountState.Error_AuthenticationError);
        AddTransition(OnlineDiscountState.Connected, OnlineDiscountCommand.Submit, OnlineDiscountState.WaitingForResponse);
        AddTransition(OnlineDiscountState.WaitingForResponse, OnlineDiscountCommand.DataReceived, OnlineDiscountState.Disconnected);
    }
}

use the derived state machine

    odsm = new OnlineDiscountStateMachine();
    public void Connect()
    {
        var result = odsm.TryGetNext(OnlineDiscountCommand.Connect);

        //is result valid?
        if (!result.IsValid)
            //if this happens you need to add transitions to the state machine
            //in this case result.NewState is the same as before
            Console.WriteLine("cannot navigate from this state using OnlineDiscountCommand.Connect");

        //the transition was successfull
        //show messages for new states
        else if(result.NewState == OnlineDiscountState.Error_AuthenticationError)
            Console.WriteLine("invalid user/pass");
        else if(result.NewState == OnlineDiscountState.Connected)
            Console.WriteLine("Connected");
        else
            Console.WriteLine("not implemented transition result for " + result.NewState);
    }
查看更多
登录 后发表回答