Memory leak when using strings < 128KB in Pytho

2019-02-04 13:12发布

Original title: Memory leak opening files < 128KB in Python?

Original question

I see what I think is a memory leak when running my Python script. Here is my script:

import sys
import time


class MyObj(object):
    def __init__(self, filename):
        with open(filename) as f:
            self.att = f.read()


def myfunc(filename):
    mylist = [MyObj(filename) for x in xrange(100)]
    len(mylist)
    return []


def main():
    filename = sys.argv[1]
    myfunc(filename)
    time.sleep(3600)


if __name__ == '__main__':
    main()

The main function calls myfunc() which creates a list of 100 objects that each open and read a file. After returning from myfunc(), I'd expect memory from the 100-item list and from reading the file to be freed since they are no longer referenced. However, when I check the memory usage using the ps command, the Python process uses about 10,000 KB more memory than a Python process run from a script with lines 12 and 13 commented out.

The strange thing is that the memory leak (if that's what it is) only seems to occur for files <128KB in size. I created a bash script to run this script with files ranging in size from 1KB to 200KB and the memory increase stopped when the files size hit 128KB. Here is the bash script:

#!/bin/bash

echo "PID RSS S TTY TIME COMMAND" > output.txt

for i in `seq 1 200`;
do
    python debug_memory.py "data/stuff_${i}K.txt" &
    pid=$!
    sleep 0.1
    ps -e -O rss | grep $pid | grep -v grep >> output.txt
    kill $pid
done   

Here is the output of the bash script:

PID RSS S TTY TIME COMMAND
28471  5552 S pts/16   00:00:00 python debug_memory.py data/stuff_1K.txt
28477  5656 S pts/16   00:00:00 python debug_memory.py data/stuff_2K.txt
28483  5756 S pts/16   00:00:00 python debug_memory.py data/stuff_3K.txt
28488  5852 S pts/16   00:00:00 python debug_memory.py data/stuff_4K.txt
28494  5952 S pts/16   00:00:00 python debug_memory.py data/stuff_5K.txt
28499  6052 S pts/16   00:00:00 python debug_memory.py data/stuff_6K.txt
28505  6156 S pts/16   00:00:00 python debug_memory.py data/stuff_7K.txt
28511  6256 S pts/16   00:00:00 python debug_memory.py data/stuff_8K.txt
28516  6356 S pts/16   00:00:00 python debug_memory.py data/stuff_9K.txt
28522  6452 S pts/16   00:00:00 python debug_memory.py data/stuff_10K.txt
28527  6552 S pts/16   00:00:00 python debug_memory.py data/stuff_11K.txt
28533  6656 S pts/16   00:00:00 python debug_memory.py data/stuff_12K.txt
28539  6756 S pts/16   00:00:00 python debug_memory.py data/stuff_13K.txt
28544  6852 S pts/16   00:00:00 python debug_memory.py data/stuff_14K.txt
28550  6952 S pts/16   00:00:00 python debug_memory.py data/stuff_15K.txt
28555  7056 S pts/16   00:00:00 python debug_memory.py data/stuff_16K.txt
28561  7156 S pts/16   00:00:00 python debug_memory.py data/stuff_17K.txt
28567  7252 S pts/16   00:00:00 python debug_memory.py data/stuff_18K.txt
28572  7356 S pts/16   00:00:00 python debug_memory.py data/stuff_19K.txt
28578  7452 S pts/16   00:00:00 python debug_memory.py data/stuff_20K.txt
28584  7556 S pts/16   00:00:00 python debug_memory.py data/stuff_21K.txt
28589  7652 S pts/16   00:00:00 python debug_memory.py data/stuff_22K.txt
28595  7756 S pts/16   00:00:00 python debug_memory.py data/stuff_23K.txt
28600  7852 S pts/16   00:00:00 python debug_memory.py data/stuff_24K.txt
28606  7952 S pts/16   00:00:00 python debug_memory.py data/stuff_25K.txt
28612  8052 S pts/16   00:00:00 python debug_memory.py data/stuff_26K.txt
28617  8152 S pts/16   00:00:00 python debug_memory.py data/stuff_27K.txt
28623  8252 S pts/16   00:00:00 python debug_memory.py data/stuff_28K.txt
28629  8356 S pts/16   00:00:00 python debug_memory.py data/stuff_29K.txt
28634  8452 S pts/16   00:00:00 python debug_memory.py data/stuff_30K.txt
28640  8556 S pts/16   00:00:00 python debug_memory.py data/stuff_31K.txt
28645  8656 S pts/16   00:00:00 python debug_memory.py data/stuff_32K.txt
28651  8756 S pts/16   00:00:00 python debug_memory.py data/stuff_33K.txt
28657  8856 S pts/16   00:00:00 python debug_memory.py data/stuff_34K.txt
28662  8956 S pts/16   00:00:00 python debug_memory.py data/stuff_35K.txt
28668  9056 S pts/16   00:00:00 python debug_memory.py data/stuff_36K.txt
28674  9156 S pts/16   00:00:00 python debug_memory.py data/stuff_37K.txt
28679  9256 S pts/16   00:00:00 python debug_memory.py data/stuff_38K.txt
28685  9352 S pts/16   00:00:00 python debug_memory.py data/stuff_39K.txt
28691  9452 S pts/16   00:00:00 python debug_memory.py data/stuff_40K.txt
28696  9552 S pts/16   00:00:00 python debug_memory.py data/stuff_41K.txt
28702  9656 S pts/16   00:00:00 python debug_memory.py data/stuff_42K.txt
28707  9756 S pts/16   00:00:00 python debug_memory.py data/stuff_43K.txt
28713  9852 S pts/16   00:00:00 python debug_memory.py data/stuff_44K.txt
28719  9952 S pts/16   00:00:00 python debug_memory.py data/stuff_45K.txt
28724 10052 S pts/16   00:00:00 python debug_memory.py data/stuff_46K.txt
28730 10156 S pts/16   00:00:00 python debug_memory.py data/stuff_47K.txt
28739 10256 S pts/16   00:00:00 python debug_memory.py data/stuff_48K.txt
28746 10352 S pts/16   00:00:00 python debug_memory.py data/stuff_49K.txt
28752 10452 S pts/16   00:00:00 python debug_memory.py data/stuff_50K.txt
28757 10556 S pts/16   00:00:00 python debug_memory.py data/stuff_51K.txt
28763 10656 S pts/16   00:00:00 python debug_memory.py data/stuff_52K.txt
28769 10752 S pts/16   00:00:00 python debug_memory.py data/stuff_53K.txt
28774 10852 S pts/16   00:00:00 python debug_memory.py data/stuff_54K.txt
28780 10952 S pts/16   00:00:00 python debug_memory.py data/stuff_55K.txt
28786 11052 S pts/16   00:00:00 python debug_memory.py data/stuff_56K.txt
28791 11152 S pts/16   00:00:00 python debug_memory.py data/stuff_57K.txt
28797 11256 S pts/16   00:00:00 python debug_memory.py data/stuff_58K.txt
28802 11356 S pts/16   00:00:00 python debug_memory.py data/stuff_59K.txt
28808 11452 S pts/16   00:00:00 python debug_memory.py data/stuff_60K.txt
28814 11556 S pts/16   00:00:00 python debug_memory.py data/stuff_61K.txt
28819 11656 S pts/16   00:00:00 python debug_memory.py data/stuff_62K.txt
28825 11752 S pts/16   00:00:00 python debug_memory.py data/stuff_63K.txt
28831 11852 S pts/16   00:00:00 python debug_memory.py data/stuff_64K.txt
28836 11956 S pts/16   00:00:00 python debug_memory.py data/stuff_65K.txt
28842 12052 S pts/16   00:00:00 python debug_memory.py data/stuff_66K.txt
28847 12152 S pts/16   00:00:00 python debug_memory.py data/stuff_67K.txt
28853 12256 S pts/16   00:00:00 python debug_memory.py data/stuff_68K.txt
28859 12356 S pts/16   00:00:00 python debug_memory.py data/stuff_69K.txt
28864 12452 S pts/16   00:00:00 python debug_memory.py data/stuff_70K.txt
28871 12556 S pts/16   00:00:00 python debug_memory.py data/stuff_71K.txt
28877 12652 S pts/16   00:00:00 python debug_memory.py data/stuff_72K.txt
28883 12756 S pts/16   00:00:00 python debug_memory.py data/stuff_73K.txt
28889 12856 S pts/16   00:00:00 python debug_memory.py data/stuff_74K.txt
28894 12952 S pts/16   00:00:00 python debug_memory.py data/stuff_75K.txt
28900 13056 S pts/16   00:00:00 python debug_memory.py data/stuff_76K.txt
28906 13156 S pts/16   00:00:00 python debug_memory.py data/stuff_77K.txt
28911 13256 S pts/16   00:00:00 python debug_memory.py data/stuff_78K.txt
28917 13352 S pts/16   00:00:00 python debug_memory.py data/stuff_79K.txt
28922 13452 S pts/16   00:00:00 python debug_memory.py data/stuff_80K.txt
28928 13556 S pts/16   00:00:00 python debug_memory.py data/stuff_81K.txt
28934 13652 S pts/16   00:00:00 python debug_memory.py data/stuff_82K.txt
28939 13752 S pts/16   00:00:00 python debug_memory.py data/stuff_83K.txt
28945 13852 S pts/16   00:00:00 python debug_memory.py data/stuff_84K.txt
28951 13952 S pts/16   00:00:00 python debug_memory.py data/stuff_85K.txt
28956 14052 S pts/16   00:00:00 python debug_memory.py data/stuff_86K.txt
28962 14152 S pts/16   00:00:00 python debug_memory.py data/stuff_87K.txt
28967 14256 S pts/16   00:00:00 python debug_memory.py data/stuff_88K.txt
28973 14352 S pts/16   00:00:00 python debug_memory.py data/stuff_89K.txt
28979 14456 S pts/16   00:00:00 python debug_memory.py data/stuff_90K.txt
28984 14552 S pts/16   00:00:00 python debug_memory.py data/stuff_91K.txt
28990 14652 S pts/16   00:00:00 python debug_memory.py data/stuff_92K.txt
28996 14756 S pts/16   00:00:00 python debug_memory.py data/stuff_93K.txt
29001 14852 S pts/16   00:00:00 python debug_memory.py data/stuff_94K.txt
29007 14956 S pts/16   00:00:00 python debug_memory.py data/stuff_95K.txt
29012 15052 S pts/16   00:00:00 python debug_memory.py data/stuff_96K.txt
29018 15156 S pts/16   00:00:00 python debug_memory.py data/stuff_97K.txt
29024 15252 S pts/16   00:00:00 python debug_memory.py data/stuff_98K.txt
29029 15360 S pts/16   00:00:00 python debug_memory.py data/stuff_99K.txt
29035 15456 S pts/16   00:00:00 python debug_memory.py data/stuff_100K.txt
29040 15556 S pts/16   00:00:00 python debug_memory.py data/stuff_101K.txt
29046 15652 S pts/16   00:00:00 python debug_memory.py data/stuff_102K.txt
29052 15756 S pts/16   00:00:00 python debug_memory.py data/stuff_103K.txt
29057 15852 S pts/16   00:00:00 python debug_memory.py data/stuff_104K.txt
29063 15952 S pts/16   00:00:00 python debug_memory.py data/stuff_105K.txt
29069 16056 S pts/16   00:00:00 python debug_memory.py data/stuff_106K.txt
29074 16152 S pts/16   00:00:00 python debug_memory.py data/stuff_107K.txt
29080 16256 S pts/16   00:00:00 python debug_memory.py data/stuff_108K.txt
29085 16356 S pts/16   00:00:00 python debug_memory.py data/stuff_109K.txt
29091 16452 S pts/16   00:00:00 python debug_memory.py data/stuff_110K.txt
29097 16552 S pts/16   00:00:00 python debug_memory.py data/stuff_111K.txt
29102 16652 S pts/16   00:00:00 python debug_memory.py data/stuff_112K.txt
29108 16756 S pts/16   00:00:00 python debug_memory.py data/stuff_113K.txt
29113 16852 S pts/16   00:00:00 python debug_memory.py data/stuff_114K.txt
29119 16952 S pts/16   00:00:00 python debug_memory.py data/stuff_115K.txt
29125 17056 S pts/16   00:00:00 python debug_memory.py data/stuff_116K.txt
29130 17156 S pts/16   00:00:00 python debug_memory.py data/stuff_117K.txt
29136 17256 S pts/16   00:00:00 python debug_memory.py data/stuff_118K.txt
29141 17356 S pts/16   00:00:00 python debug_memory.py data/stuff_119K.txt
29147 17452 S pts/16   00:00:00 python debug_memory.py data/stuff_120K.txt
29153 17556 S pts/16   00:00:00 python debug_memory.py data/stuff_121K.txt
29158 17656 S pts/16   00:00:00 python debug_memory.py data/stuff_122K.txt
29164 17756 S pts/16   00:00:00 python debug_memory.py data/stuff_123K.txt
29170 17856 S pts/16   00:00:00 python debug_memory.py data/stuff_124K.txt
29175 17952 S pts/16   00:00:00 python debug_memory.py data/stuff_125K.txt
29181 18056 S pts/16   00:00:00 python debug_memory.py data/stuff_126K.txt
29186 18152 S pts/16   00:00:00 python debug_memory.py data/stuff_127K.txt
29192  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_128K.txt
29198  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_129K.txt
29203  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_130K.txt
29209  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_131K.txt
29215  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_132K.txt
29220  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_133K.txt
29226  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_134K.txt
29231  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_135K.txt
29237  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_136K.txt
29243  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_137K.txt
29248  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_138K.txt
29254  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_139K.txt
29260  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_140K.txt
29265  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_141K.txt
29271  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_142K.txt
29276  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_143K.txt
29282  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_144K.txt
29288  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_145K.txt
29293  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_146K.txt
29299  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_147K.txt
29305  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_148K.txt
29310  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_149K.txt
29316  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_150K.txt
29321  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_151K.txt
29327  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_152K.txt
29333  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_153K.txt
29338  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_154K.txt
29344  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_155K.txt
29349  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_156K.txt
29355  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_157K.txt
29361  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_158K.txt
29366  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_159K.txt
29372  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_160K.txt
29378  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_161K.txt
29383  5460 S pts/16   00:00:00 python debug_memory.py data/stuff_162K.txt
29389  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_163K.txt
29394  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_164K.txt
29400  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_165K.txt
29406  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_166K.txt
29411  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_167K.txt
29417  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_168K.txt
29423  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_169K.txt
29428  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_170K.txt
29434  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_171K.txt
29439  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_172K.txt
29445  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_173K.txt
29451  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_174K.txt
29456  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_175K.txt
29463  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_176K.txt
29483  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_177K.txt
29489  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_178K.txt
29496  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_179K.txt
29501  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_180K.txt
29507  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_181K.txt
29512  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_182K.txt
29518  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_183K.txt
29524  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_184K.txt
29529  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_185K.txt
29535  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_186K.txt
29541  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_187K.txt
29546  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_188K.txt
29552  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_189K.txt
29557  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_190K.txt
29563  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_191K.txt
29569  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_192K.txt
29574  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_193K.txt
29580  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_194K.txt
29586  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_195K.txt
29591  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_196K.txt
29597  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_197K.txt
29602  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_198K.txt
29608  5456 S pts/16   00:00:00 python debug_memory.py data/stuff_199K.txt
29614  5452 S pts/16   00:00:00 python debug_memory.py data/stuff_200K.txt

Can someone explain what is happening? Why do I see an increase in memory usage when using files <128KB?

My full test environment is located here: https://github.com/saltycrane/debugging-python-memory-usage/tree/50f73358c7a84a504333ce9c4071b0f3537bbc0f

I am running Python 2.7.3 on Ubuntu 12.04.

UPDATE 1

This issue is not specific to working with files <128K in size. I get the same results setting the object attribute to a value the same size as was read from the file. Here is the updated code:

import sys
import time


class MyObj(object):
    def __init__(self, size_kb):
        self.att = ' ' * int(size_kb) * 1024


def myfunc(size_kb):
    mylist = [MyObj(size_kb) for x in xrange(100)]
    len(mylist)
    return []


def main():
    size_kb = sys.argv[1]
    myfunc(size_kb)
    time.sleep(3600)


if __name__ == '__main__':
    main()

Running this script gives similar results. The updated test environment is located here: https://github.com/saltycrane/debugging-python-memory-usage/tree/59b7ff61134dfc11c4195e9201b2c1728ed4fcce

UPDATE 2

I simplified my test script further by: 1. removing the class and simply creating a list of strings 2. removing myfunc() and using del to delete the mylist object

import sys
import time

def main():
    size_kb = sys.argv[1]

    mylist = []
    for x in xrange(100):
        mystr = ' ' * int(size_kb) * 1024
        mylist.append(mystr)

    del mylist

    time.sleep(3600)

if __name__ == '__main__':
    main()

My simplified script also gives similar results to the original. However, if I don't create a separate string variable, I don't see an increase in memory. Here is the script that does not create an increase in memory:

import sys
import time

def main():
    size_kb = sys.argv[1]

    mylist = []
    for x in xrange(100):
        mylist.append(' ' * int(size_kb) * 1024)

    del mylist

    time.sleep(3600)

if __name__ == '__main__':
    main()

The updated test environment is located here: https://github.com/saltycrane/debugging-python-memory-usage/tree/423ca6a50dccbe32572a9d0dea1068ddcb06663b

More questions:

  • Can someone else reproduce my results?
  • Is the increase in memory seen by ps expected?

Hints about what is happening

I discovered some interesting information about "free lists" that seem like they could be related to this issue:

From the last link:

To speed-up memory allocation (and reuse) Python uses a number of lists for small objects. Each list will contain objects of similar size

Indeed: if an item (of size x) is deallocated (freed by lack of reference) its location is not returned to Python’s global memory pool (and even less to the system), but merely marked as free and added to the free list of items of size x.

If small objects memory is never freed, then the inescapable conclusion is that, like goldfishes, these small object lists only keep growing, never shrinking, and that the memory footprint of your application is dominated by the largest number of small objects allocated at any given point.

UPDATE 3

I oversimplified the code in Update 2. Adding the line del mystr at the end of the script freed the memory. (See: https://github.com/saltycrane/debugging-python-memory-usage/blob/dd058e4774802cae7cbfca520fb835ea46b645e8/debug_memory_leaks.py)

I updated the script to be sufficiently complicated to demonstrate the issue. The issue still exists in the following code. The latest code/environment is located here: https://github.com/saltycrane/debugging-python-memory-usage/tree/fc0c8ce9ba621cb86b6abb93adf1b297a7c0230b

import gc
import sys
import time


def main():
    size_kb = sys.argv[1]

    mylist = []
    for x in xrange(100):
        mystr = ' ' * int(size_kb) * 1024
        mydict = {'mykey': mystr}
        mylist.append(mydict)

    del mystr
    del mydict
    del mylist

    gc.collect()

    time.sleep(3600)


if __name__ == '__main__':
    main()

I also ran the script is some other environments. The strange result was running from within a clean virtualenv. In this case, the memory dropoff occurred at 260KB instead of 128KB. See https://github.com/saltycrane/debugging-python-memory-usage/tree/52fbd5d57ff45affdcd70623ddb74fa1f1ffbbc2

Environments:

  • Ubuntu 12.04 64-bit, system Python 2.7.3: original run
  • Ubuntu 12.04 64-bit, Python 3.3.0 compiled from source: similar results
  • Scientific Linux 6 64-bit, Python 2.6.6: similar results
  • Ubuntu 12.04 64-bit, Python 2.7.3 from a virtualenv: memory dropoff occurs at 260KB instead of 128KB

More references:

UPDATE 4 (MOSTLY SOLVED)

schlenk uncovered the reason the memory usage drops off at 128KB. 128KB is the point at which "memory allocation functions" (malloc?) use mmap instead of increasing the program break using sbrk. Interestingly, the threshold can be changed via an environment variable. I ran a test setting the MALLOC_MMAP_THRESHOLD_ environment variable to different values and the dropoff in memory usage matched that value. See here for results: https://github.com/saltycrane/debugging-python-memory-usage/blob/97d93cd165a139a6b6f96720de63a92561dd2f05/output_debug_memory_leaks.py.txt

I would still like to know if it expected behavior for my script to leak memory for string values < 128KB.

A few more links:

Note: According to the last two links, there is a performance (speed) hit for using mmap instead of sbrk.

2条回答
Bombasti
2楼-- · 2019-02-04 13:42

I would look into garbage collection. It may be that larger files are triggering garbage collection more frequently, but the small files are being freed but collectively staying at some threshold. Specifically, call gc.collect() and then call gc.get_referrers() on the object to hopefully reveal what is keeping an instance is around. See the Python doc here:

http://docs.python.org/2/library/gc.html?highlight=gc#gc.get_referrers

Update:

The issue relates to garbage collection, namespace, and reference counting. The bash script you posted is giving a fairly narrow view of the garbage collector's behaviour. Try a larger range and you will see patterns in how much memory certain ranges will take. For example, change the bash for loop for a larger range, something like: seq 0 16 2056.

You noticed the memory usage was reduced if you del mystr because you are removing any references left to it. Similar results would likely happen if you limited the mystr variable to it's own function like so:

def loopy():
    mylist = []
    for x in xrange(100):
        mystr = ' ' * int(size_kb) * 1024
        mydict = {x: mystr}
        mylist.append(mydict)
    return mylist

Rather than using bash scripts, I think you could get more useful information using a memory profiler. Here are a couple examples using Pympler. This first version is similar to your code from Update 3:

import gc
import sys
import time
from pympler import tracker

tr = tracker.SummaryTracker()
print 'begin:'
tr.print_diff()

size_kb = sys.argv[1]

mylist = []
mydict = {}

print 'empty list & dict:'
tr.print_diff()

for x in xrange(100):
    mystr = ' ' * int(size_kb) * 1024
    mydict = {x: mystr}
    mylist.append(mydict)

print 'after for loop:'
tr.print_diff()

del mystr
del mydict
del mylist

print 'after deleting stuff:'
tr.print_diff()

collected = gc.collect()
print 'after garbage collection (collected: %d):' % collected
tr.print_diff()

time.sleep(2)
print 'took a short nap after all that work:'
tr.print_diff()

mylist = []
print 'create an empty list for some reason:'
tr.print_diff()

And the output:

$ python mem_test.py 256
begin:
                  types |   # objects |    total size
======================= | =========== | =============
                   list |         957 |      97.44 KB
                    str |         951 |      53.65 KB
                    int |         118 |       2.77 KB
     wrapper_descriptor |           8 |     640     B
                weakref |           3 |     264     B
      member_descriptor |           2 |     144     B
      getset_descriptor |           2 |     144     B
  function (store_info) |           1 |     120     B
                   cell |           2 |     112     B
         instancemethod |          -1 |     -80     B
       _sre.SRE_Pattern |          -2 |    -176     B
                  tuple |          -1 |    -216     B
                   dict |           2 |   -1744     B
empty list & dict:
  types |   # objects |   total size
======= | =========== | ============
   list |           2 |    168     B
    str |           2 |     97     B
    int |           1 |     24     B
after for loop:
  types |   # objects |   total size
======= | =========== | ============
    str |           1 |    256.04 KB
   list |           0 |    848     B
after deleting stuff:
  types |   # objects |      total size
======= | =========== | ===============
   list |          -1 |      -920     B
    str |          -1 |   -262181     B
after garbage collection (collected: 0):
  types |   # objects |   total size
======= | =========== | ============
took a short nap after all that work:
  types |   # objects |   total size
======= | =========== | ============
create an empty list for some reason:
  types |   # objects |   total size
======= | =========== | ============
   list |           1 |     72     B

Notice after the for loop the total size for the str class is 256 KB, essentially the same as the argument I passed to it. After explicitly removing the reference to mystr in del mystr the memory is freed. After this, the garbage has already been picked up so there's no further reduction after gc.collect().

The next version uses a function to create a different namespace for the string.

import gc
import sys
import time
from pympler import tracker

def loopy():
    mylist = []
    for x in xrange(100):
        mystr = ' ' * int(size_kb) * 1024
        mydict = {x: mystr}
        mylist.append(mydict)
    return mylist


tr = tracker.SummaryTracker()
print 'begin:'
tr.print_diff()

size_kb = sys.argv[1]

mylist = loopy()

print 'after for loop:'
tr.print_diff()

del mylist

print 'after deleting stuff:'
tr.print_diff()

collected = gc.collect()
print 'after garbage collection (collected: %d):' % collected
tr.print_diff()

time.sleep(2)
print 'took a short nap after all that work:'
tr.print_diff()

mylist = []
print 'create an empty list for some reason:'
tr.print_diff()

And finally the output from this version:

$ python mem_test_2.py 256
begin:
                  types |   # objects |    total size
======================= | =========== | =============
                   list |         958 |      97.53 KB
                    str |         952 |      53.70 KB
                    int |         118 |       2.77 KB
     wrapper_descriptor |           8 |     640     B
                weakref |           3 |     264     B
      member_descriptor |           2 |     144     B
      getset_descriptor |           2 |     144     B
  function (store_info) |           1 |     120     B
                   cell |           2 |     112     B
         instancemethod |          -1 |     -80     B
       _sre.SRE_Pattern |          -2 |    -176     B
                  tuple |          -1 |    -216     B
                   dict |           2 |   -1744     B
after for loop:
  types |   # objects |   total size
======= | =========== | ============
   list |           2 |   1016     B
    str |           2 |     97     B
    int |           1 |     24     B
after deleting stuff:
  types |   # objects |   total size
======= | =========== | ============
   list |          -1 |   -920     B
after garbage collection (collected: 0):
  types |   # objects |   total size
======= | =========== | ============
took a short nap after all that work:
  types |   # objects |   total size
======= | =========== | ============
create an empty list for some reason:
  types |   # objects |   total size
======= | =========== | ============
   list |           1 |     72     B

Now, we don't have to clean up the str, and I think this example shows why using functions are a good idea. Generating code where there's one big chunk in one namespace is really preventing the garbage collector from doing it's job. It will not come into your house and start assuming things are trash :) It has to know that things are safe to collect.

That Evan Jones link is very interesting btw.

查看更多
祖国的老花朵
3楼-- · 2019-02-04 13:51

You might simply hit the default behaviour of the linux memory allocator.

Basically Linux has two allocation strategies, sbrk() for small blocks of memory and mmap() for larger blocks. sbrk() allocated memory blocks cannot easily be returned to the system, while mmap() based ones can (just unmap the page).

So if you allocate a memory block larger than the value where the malloc() allocator in your libc decides to switch between sbrk() and mmap() you see this effect. See the mallopt() call, especially the MMAP_THRESHOLD (http://man7.org/linux/man-pages/man3/mallopt.3.html).

Update To answer your extra question: yes, it is expected that you leak memory that way, if the memory allocator works like the libc one on Linux. If you used Windows LowFragmentationHeap instead, it would probably not leak, similar on AIX, depending on which malloc is configured. Maybe one of the other allocators (tcmalloc etc.) also fix such issues. sbrk() is blazingly fast, but has issues with memory fragmentation. CPython cannot do much about it, as it does not have a compacting garbage collector, but simple reference counting.

Python offers a few methods to reduce the buffer allocations, see for example the blog post here: http://eli.thegreenplace.net/2011/11/28/less-copies-in-python-with-the-buffer-protocol-and-memoryviews/

查看更多
登录 后发表回答