I'm trying to preform recursive feature elimination using scikit-learn
and a random forest classifier, with OOB ROC as the method of scoring each subset created during the recursive process.
However, when I try to use the RFECV
method, I get an error saying AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'
Random Forests don't have coefficients per se, but they do have rankings by Gini score. So, I'm wondering how to get arround this problem.
Please note that I want to use a method that will explicitly tell me what features from my pandas
DataFrame were selected in the optimal grouping as I am using recursive feature selection to try to minimize the amount of data I will input into the final classifier.
Here's some example code:
from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV
iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pd.Series(iris.target, name='target')
rf = RandomForestClassifier(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=10, scoring='ROC', verbose=2)
selector=rfecv.fit(x, y)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 336, in fit
ranking_ = rfe.fit(X_train, y_train).ranking_
File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 148, in fit
if estimator.coef_.ndim > 1:
AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'
Here's what I ginned up. It's a pretty simple solution, and relies on a custom accuracy metric (called weightedAccuracy) since I'm classifying a highly unbalanced dataset. But, it should be easily made more extensible if desired.
Here's what I've done to adapt RandomForestClassifier to work with RFECV:
Just using this class does the trick if you use 'accuracy' or 'f1' score. For 'roc_auc', RFECV complains that multiclass format is not supported. Changing it to two-class classification with the code below, the 'roc_auc' scoring works. (Using Python 3.4.1 and scikit-learn 0.15.1)
Plugging into your code:
This is my code, I've tidied it up a bit to make it relevant to your task:
So what I'm doing here is I have a list of features I want to train and then predict against, using the feature importances I then trim the worst 5 and repeat. During each run I add a row to record the prediction performance so that I can do some analysis later.
The original code was much bigger I had different classifiers and datasets I was analysing but I hope you get the picture from the above. The thing I noticed was that for random forest the number of features I removed on each run affected the performance so trimming by 1, 3 and 5 features at a time resulted in a different set of best features.
I found that using a GradientBoostingClassifer was more predictable and repeatable in the sense that the final set of best features agreed whether I trimmed 1 feature at a time or 3 or 5.
I hope I'm not teaching you to suck eggs here, you probably know more than me, but my approach to ablative anlaysis was to use a fast classifier to get a rough idea of the best sets of features, then use a better performing classifier, then start hyper parameter tuning, again doing coarse grain comaprisons and then fine grain once I get a feel of what the best params were.
I submitted a request to add
coef_
soRandomForestClassifier
may be used withRFECV
. However, the change had already been made. This change will be in version 0.17.https://github.com/scikit-learn/scikit-learn/issues/4945
You can pull the latest dev build if you want to use it now.