I have been trying to get the sound frequency(number) in real time using fft and i am having run time errors. can any one help?
package com.example.recordsound;
import edu.emory.mathcs.jtransforms.fft.DoubleFFT_1D;
import ca.uol.aig.fftpack.RealDoubleFFT;
public class MainActivity extends Activity implements OnClickListener{
int audioSource = MediaRecorder.AudioSource.MIC; // Audio source is the device MIC
int channelConfig = AudioFormat.CHANNEL_IN_MONO; // Recording in mono
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT; // Records in 16bit
private DoubleFFT_1D fft; // The fft double array
private RealDoubleFFT transformer;
int blockSize = 256; // deal with this many samples at a time
int sampleRate = 8000; // Sample rate in Hz
public double frequency = 0.0; // the frequency given
RecordAudio recordTask; // Creates a Record Audio command
TextView tv; // Creates a text view for the frequency
boolean started = false;
Button startStopButton;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
tv = (TextView)findViewById(R.id.textView1);
startStopButton= (Button)findViewById(R.id.button1);
}
@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;
}
private class RecordAudio extends AsyncTask<Void, Double, Void>{
@Override
protected Void doInBackground(Void... params){
/*Calculates the fft and frequency of the input*/
//try{
int bufferSize = AudioRecord.getMinBufferSize(sampleRate, channelConfig, audioEncoding); // Gets the minimum buffer needed
AudioRecord audioRecord = new AudioRecord(audioSource, sampleRate, channelConfig, audioEncoding, bufferSize); // The RAW PCM sample recording
short[] buffer = new short[blockSize]; // Save the raw PCM samples as short bytes
// double[] audioDataDoubles = new double[(blockSize*2)]; // Same values as above, as doubles
// -----------------------------------------------
double[] re = new double[blockSize];
double[] im = new double[blockSize];
double[] magnitude = new double[blockSize];
// ----------------------------------------------------
double[] toTransform = new double[blockSize];
tv.setText("Hello");
// fft = new DoubleFFT_1D(blockSize);
try{
audioRecord.startRecording(); //Start
}catch(Throwable t){
Log.e("AudioRecord", "Recording Failed");
}
while(started){
/* Reads the data from the microphone. it takes in data
* to the size of the window "blockSize". The data is then
* given in to audioRecord. The int returned is the number
* of bytes that were read*/
int bufferReadResult = audioRecord.read(buffer, 0, blockSize);
// Read in the data from the mic to the array
for(int i = 0; i < blockSize && i < bufferReadResult; i++) {
/* dividing the short by 32768.0 gives us the
* result in a range -1.0 to 1.0.
* Data for the compextForward is given back
* as two numbers in sequence. Therefore audioDataDoubles
* needs to be twice as large*/
// audioDataDoubles[2*i] = (double) buffer[i]/32768.0; // signed 16 bit
//audioDataDoubles[(2*i)+1] = 0.0;
toTransform[i] = (double) buffer[i] / 32768.0; // signed 16 bit
}
//audiodataDoubles now holds data to work with
// fft.complexForward(audioDataDoubles);
transformer.ft(toTransform);
//------------------------------------------------------------------------------------------
// Calculate the Real and imaginary and Magnitude.
for(int i = 0; i < blockSize; i++){
// real is stored in first part of array
re[i] = toTransform[i*2];
// imaginary is stored in the sequential part
im[i] = toTransform[(i*2)+1];
// magnitude is calculated by the square root of (imaginary^2 + real^2)
magnitude[i] = Math.sqrt((re[i] * re[i]) + (im[i]*im[i]));
}
double peak = -1.0;
// Get the largest magnitude peak
for(int i = 0; i < blockSize; i++){
if(peak < magnitude[i])
peak = magnitude[i];
}
// calculated the frequency
frequency = (sampleRate * peak)/blockSize;
//----------------------------------------------------------------------------------------------
/* calls onProgressUpdate
* publishes the frequency
*/
publishProgress(frequency);
try{
audioRecord.stop();
}
catch(IllegalStateException e){
Log.e("Stop failed", e.toString());
}
}
// }
return null;
}
protected void onProgressUpdate(Double... frequencies){
//print the frequency
String info = Double.toString(frequencies[0]);
tv.setText(info);
}
}
@Override
public void onClick(View v) {
// TODO Auto-generated method stub
if(started){
started = false;
startStopButton.setText("Start");
recordTask.cancel(true);
} else {
started = true;
startStopButton.setText("Stop");
recordTask = new RecordAudio();
recordTask.execute();
}
}
}
AS SOON AS I run the program with the OnClick it crashes I tried two libraries for fft but ran one at a time to see if the library works or not As soon as it reaches the line where I assign the the block size to the FFT object it crashes can any one help
Did you solved the problem? The crush is occurred because of the ArrayIndexOutOfBoundsException.
So, modify your code to :
Try this FFT:
It should address what you have in mind. If you decided to re-use it, give the proper credit to the author.
Source/Author: EricLarch
If you really want to perform a real-time audio analysis, a Java-based approach won't do. I had a similar task in Q4 2013 for my company, and we decided to use Kiss FFT (perhaps the most simple FFT library with a BSD license), compiled for Android using the NDK.
A native C/C++ approach is tons of times faster than its Java counterpart. With the former, we have been able to perform real-time audio decoding and audio features analysis on nearly every mid to high end device, something that was obviously impossible with the latter.
I strongly suggest you to consider the native approach as your best option to do this task. Kiss FFT is a really simple library (literally stands for
Keep It Simple FFT
), and you won't find much troubles in compiling and using it on Android. You won't be disappointed by the performance results.