I'm having trouble with the NLTK under Python, specifically the .generate() method.
generate(self, length=100)
Print random text, generated using a trigram language model.
Parameters:
* length (int) - The length of text to generate (default=100)
Here is a simplified version of what I am attempting.
import nltk
words = 'The quick brown fox jumps over the lazy dog'
tokens = nltk.word_tokenize(words)
text = nltk.Text(tokens)
print text.generate(3)
This will always generate
Building ngram index...
The quick brown
None
As opposed to building a random phrase out of the words.
Here is my output when I do
print text.generate()
Building ngram index...
The quick brown fox jumps over the lazy dog fox jumps over the lazy
dog dog The quick brown fox jumps over the lazy dog dog brown fox
jumps over the lazy dog over the lazy dog The quick brown fox jumps
over the lazy dog fox jumps over the lazy dog lazy dog The quick brown
fox jumps over the lazy dog the lazy dog The quick brown fox jumps
over the lazy dog jumps over the lazy dog over the lazy dog brown fox
jumps over the lazy dog quick brown fox jumps over the lazy dog The
None
Again starting out with the same text, but then varying it. I've also tried using the first chapter from Orwell's 1984. Again that always starts with the first 3 tokens (one of which is a space in this case) and then goes on to randomly generate text.
What am I doing wrong here?
Are you sure that using
word_tokenize
is the right approach?This Google groups page has the example:
But I've never used nltk, so I can't say whether that works the way you want.
You should be "training" the Markov model with multiple sequences, so that you accurately sample the starting state probabilities as well (called "pi" in Markov-speak). If you use a single sequence then you will always start in the same state.
In the case of Orwell's 1984 you would want to use sentence tokenization first (NLTK is very good at it), then word tokenization (yielding a list of lists of tokens, not just a single list of tokens) and then feed each sentence separately to the Markov model. This will allow it to properly model sequence starts, instead of being stuck on a single way to start every sequence.
Your sample corpus is most likely to be too small. I don't know how exactly nltk builds its trigram model but it is common practice that beginning and end of sentences are handled somehow. Since there is only one beginning of sentence in your corpus this might be the reason why every sentence has the same beginning.
Maybe you can sort the tokens array randomly before generating a sentence.
To generate random text, U need to use Markov Chains
code to do that: from here
Explaination: Generating pseudo random text with Markov chains using Python