#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int num = 1234567;
int den = 3;
div_t r = div(num,den); // div() is a standard C function.
printf("%d\n", r.quot);
return 0;
}
public static int div_by_3(long a) {
a <<= 30;
for(int i = 2; i <= 32 ; i <<= 1) {
a = add(a, a >> i);
}
return (int) (a >> 32);
}
public static long add(long a, long b) {
long carry = (a & b) << 1;
long sum = (a ^ b);
return carry == 0 ? sum : add(carry, sum);
}
First, note that
1/3 = 1/4 + 1/16 + 1/64 + ...
Now, the rest is simple!
a/3 = a * 1/3
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...
Now all we have to do is add together these bit shifted values of a! Oops! We can't add though, so instead, we'll have to write an add function using bit-wise operators! If you're familiar with bit-wise operators, my solution should look fairly simple... but just in-case you aren't, I'll walk through an example at the end.
Another thing to note is that first I shift left by 30! This is to make sure that the fractions don't get rounded off.
I'm not sure whether it's strictly possible to implement a conforming C compiler on such a platform though. We might have to stretch the rules a bit, like interpreting "at least 8 bits" as "capable of holding at least integers from -128 to +127".
Write the program in Pascal and use the DIV operator.
Since the question is tagged c, you can probably write a function in Pascal and call it from your C program; the method for doing so is system-specific.
But here's an example that works on my Ubuntu system with the Free Pascal fp-compiler package installed. (I'm doing this out of sheer misplaced stubbornness; I make no claim that this is useful.)
divide_by_3.pas :
unit Divide_By_3;
interface
function div_by_3(n: integer): integer; cdecl; export;
implementation
function div_by_3(n: integer): integer; cdecl;
begin
div_by_3 := n div 3;
end;
end.
main.c :
#include <stdio.h>
#include <stdlib.h>
extern int div_by_3(int n);
int main(void) {
int n;
fputs("Enter a number: ", stdout);
fflush(stdout);
scanf("%d", &n);
printf("%d / 3 = %d\n", n, div_by_3(n));
return 0;
}
To build:
fpc divide_by_3.pas && gcc divide_by_3.o main.c -o main
You can use (platform dependent) inline assembly, e.g., for x86: (also works for negative numbers)
Here's my solution:
First, note that
Now, the rest is simple!
Now all we have to do is add together these bit shifted values of a! Oops! We can't add though, so instead, we'll have to write an add function using bit-wise operators! If you're familiar with bit-wise operators, my solution should look fairly simple... but just in-case you aren't, I'll walk through an example at the end.
Another thing to note is that first I shift left by 30! This is to make sure that the fractions don't get rounded off.
It's simply carry addition that you learned as a child!
This implementation failed because we can not add all terms of the equation:
Suppose the reslut of
div_by_3(a)
= x, thenx <= floor(f(a, i)) < a / 3
. Whena = 3k
, we get wrong answer.It is easily possible on the Setun computer.
To divide an integer by 3, shift right by 1 place.
I'm not sure whether it's strictly possible to implement a conforming C compiler on such a platform though. We might have to stretch the rules a bit, like interpreting "at least 8 bits" as "capable of holding at least integers from -128 to +127".
Write the program in Pascal and use the
DIV
operator.Since the question is tagged c, you can probably write a function in Pascal and call it from your C program; the method for doing so is system-specific.
But here's an example that works on my Ubuntu system with the Free Pascal
fp-compiler
package installed. (I'm doing this out of sheer misplaced stubbornness; I make no claim that this is useful.)divide_by_3.pas
:main.c
:To build:
Sample execution:
Since it's from Oracle, how about a lookup table of pre calculated answers. :-D