Why should I use a pointer rather than the object

2018-12-31 04:06发布

I'm coming from a Java background and have started working with objects in C++. But one thing that occurred to me is that people often use pointers to objects rather than the objects themselves, for example this declaration:

Object *myObject = new Object;

rather than:

Object myObject;

Or instead of using a function, let's say testFunc(), like this:

myObject.testFunc();

we have to write:

myObject->testFunc();

But I can't figure out why should we do it this way. I would assume it has to do with efficiency and speed since we get direct access to the memory address. Am I right?

22条回答
不再属于我。
2楼-- · 2018-12-31 04:29

One reason for using pointers is to interface with C functions. Another reason is to save memory; for example: instead of passing an object which contains a lot of data and has a processor-intensive copy-constructor to a function, just pass a pointer to the object, saving memory and speed especially if you're in a loop, however a reference would be better in that case, unless you're using an C-style array.

查看更多
弹指情弦暗扣
3楼-- · 2018-12-31 04:30

With pointers ,

  • can directly talk to the memory.

  • can prevent lot of memory leaks of a program by manipulating pointers.

查看更多
只若初见
4楼-- · 2018-12-31 04:32

C++ gives you three ways to pass an object: by pointer, by reference, and by value. Java limits you with the latter one (the only exception is primitive types like int, boolean etc). If you want to use C++ not just like a weird toy, then you'd better get to know the difference between these three ways.

Java pretends that there is no such problem as 'who and when should destroy this?'. The answer is: The Garbage Collector, Great and Awful. Nevertheless, it can't provide 100% protection against memory leaks (yes, java can leak memory). Actually, GC gives you a false sense of safety. The bigger your SUV, the longer your way to the evacuator.

C++ leaves you face-to-face with object's lifecycle management. Well, there are means to deal with that (smart pointers family, QObject in Qt and so on), but none of them can be used in 'fire and forget' manner like GC: you should always keep in mind memory handling. Not only should you care about destroying an object, you also have to avoid destroying the same object more than once.

Not scared yet? Ok: cyclic references - handle them yourself, human. And remember: kill each object precisely once, we C++ runtimes don't like those who mess with corpses, leave dead ones alone.

So, back to your question.

When you pass your object around by value, not by pointer or by reference, you copy the object (the whole object, whether it's a couple of bytes or a huge database dump - you're smart enough to care to avoid latter, aren't you?) every time you do '='. And to access the object's members, you use '.' (dot).

When you pass your object by pointer, you copy just a few bytes (4 on 32-bit systems, 8 on 64-bit ones), namely - the address of this object. And to show this to everyone, you use this fancy '->' operator when you access the members. Or you can use the combination of '*' and '.'.

When you use references, then you get the pointer that pretends to be a value. It's a pointer, but you access the members through '.'.

And, to blow your mind one more time: when you declare several variables separated by commas, then (watch the hands):

  • Type is given to everyone
  • Value/pointer/reference modifier is individual

Example:

struct MyStruct
{
    int* someIntPointer, someInt; //here comes the surprise
    MyStruct *somePointer;
    MyStruct &someReference;
};

MyStruct s1; //we allocated an object on stack, not in heap

s1.someInt = 1; //someInt is of type 'int', not 'int*' - value/pointer modifier is individual
s1.someIntPointer = &s1.someInt;
*s1.someIntPointer = 2; //now s1.someInt has value '2'
s1.somePointer = &s1;
s1.someReference = s1; //note there is no '&' operator: reference tries to look like value
s1.somePointer->someInt = 3; //now s1.someInt has value '3'
*(s1.somePointer).someInt = 3; //same as above line
*s1.somePointer->someIntPointer = 4; //now s1.someInt has value '4'

s1.someReference.someInt = 5; //now s1.someInt has value '5'
                              //although someReference is not value, it's members are accessed through '.'

MyStruct s2 = s1; //'NO WAY' the compiler will say. Go define your '=' operator and come back.

//OK, assume we have '=' defined in MyStruct

s2.someInt = 0; //s2.someInt == 0, but s1.someInt is still 5 - it's two completely different objects, not the references to the same one
查看更多
回忆,回不去的记忆
5楼-- · 2018-12-31 04:33

There are many excellent answers to this question, including the important use cases of forward declarations, polymorphism etc. but I feel a part of the "soul" of your question is not answered - namely what the different syntaxes mean across Java and C++.

Let's examine the situation comparing the two languages:

Java:

Object object1 = new Object(); //A new object is allocated by Java
Object object2 = new Object(); //Another new object is allocated by Java

object1 = object2; 
//object1 now points to the object originally allocated for object2
//The object originally allocated for object1 is now "dead" - nothing points to it, so it
//will be reclaimed by the Garbage Collector.
//If either object1 or object2 is changed, the change will be reflected to the other

The closest equivalent to this, is:

C++:

Object * object1 = new Object(); //A new object is allocated on the heap
Object * object2 = new Object(); //Another new object is allocated on the heap
delete object1;
//Since C++ does not have a garbage collector, if we don't do that, the next line would 
//cause a "memory leak", i.e. a piece of claimed memory that the app cannot use 
//and that we have no way to reclaim...

object1 = object2; //Same as Java, object1 points to object2.

Let's see the alternative C++ way:

Object object1; //A new object is allocated on the STACK
Object object2; //Another new object is allocated on the STACK
object1 = object2;//!!!! This is different! The CONTENTS of object2 are COPIED onto object1,
//using the "copy assignment operator", the definition of operator =.
//But, the two objects are still different. Change one, the other remains unchanged.
//Also, the objects get automatically destroyed once the function returns...

The best way to think of it is that -- more or less -- Java (implicitly) handles pointers to objects, while C++ may handle either pointers to objects, or the objects themselves. There are exceptions to this -- for example, if you declare Java "primitive" types, they are actual values that are copied, and not pointers. So,

Java:

int object1; //An integer is allocated on the stack.
int object2; //Another integer is allocated on the stack.
object1 = object2; //The value of object2 is copied to object1.

That said, using pointers is NOT necessarily either the correct or the wrong way to handle things; however other answers have covered that satisfactorily. The general idea though is that in C++ you have much more control on the lifetime of the objects, and on where they will live.

Take home point -- the Object * object = new Object() construct is actually what is closest to typical Java (or C# for that matter) semantics.

查看更多
琉璃瓶的回忆
6楼-- · 2018-12-31 04:33

There are many benefits of using pointers to object -

  1. Efficiency (as you already pointed out). Passing objects to functions mean creating new copies of object.
  2. Working with objects from third party libraries. If your object belongs to a third party code and the authors intend the usage of their objects through pointers only (no copy constructors etc) the only way you can pass around this object is using pointers. Passing by value may cause issues. (Deep copy / shallow copy issues).
  3. if the object owns a resource and you want that the ownership should not be sahred with other objects.
查看更多
明月照影归
7楼-- · 2018-12-31 04:34

Well the main question is Why should I use a pointer rather than the object itself? And my answer, you should (almost) never use pointer instead of object, because C++ has references, it is safer then pointers and guarantees the same performance as pointers.

Another thing you mentioned in your question:

Object *myObject = new Object;

How does it work? It creates pointer of Object type, allocates memory to fit one object and calls default constructor, sounds good, right? But actually it isn't so good, if you dynamically allocated memory (used keyword new), you also have to free memory manually, that means in code you should have:

delete myObject;

This calls destructor and frees memory, looks easy, however in big projects may be difficult to detect if one thread freed memory or not, but for that purpose you can try shared pointers, these slightly decreases performance, but it is much easier to work with them.


And now some introduction is over and go back to question.

You can use pointers instead of objects to get better performance while transferring data between function.

Take a look, you have std::string (it is also object) and it contains really much data, for example big XML, now you need to parse it, but for that you have function void foo(...) which can be declarated in different ways:

  1. void foo(std::string xml); In this case you will copy all data from your variable to function stack, it takes some time, so your performance will be low.
  2. void foo(std::string* xml); In this case you will pass pointer to object, same speed as passing size_t variable, however this declaration has error prone, because you can pass NULL pointer or invalid pointer. Pointers usually used in C because it doesn't have references.
  3. void foo(std::string& xml); Here you pass reference, basically it is the same as passing pointer, but compiler does some stuff and you cannot pass invalid reference (actually it is possible to create situation with invalid reference, but it is tricking compiler).
  4. void foo(const std::string* xml); Here is the same as second, just pointer value cannot be changed.
  5. void foo(const std::string& xml); Here is the same as third, but object value cannot be changed.

What more I want to mention, you can use these 5 ways to pass data no matter which allocation way you have chosen (with new or regular).


Another thing to mention, when you create object in regular way, you allocate memory in stack, but while you create it with new you allocate heap. It is much faster to allocate stack, but it is kind a small for really big arrays of data, so if you need big object you should use heap, because you may get stack overflow, but usually this issue is solved using STL containers and remember std::string is also container, some guys forgot it :)

查看更多
登录 后发表回答