I have images that I am using for a computer vision task. The task is sensitive to image quality. I'd like to remove all images that are below a certain threshold, but I am unsure if there is any method/heuristic to automatically detect images that are heavily compressed via JPEG. Anyone have an idea?
相关问题
- How to get the background from multiple images by
- iOS (objective-c) compression_decode_buffer() retu
- How to get the bounding box of text that are overl
- Is there a public implemention of LZSS compression
- Reading and Compressing a picture with RLE
相关文章
- c# saving very large bitmaps as jpegs (or any othe
- What share of Android devices benefits from Libjpe
- how to calculate field of view of the camera from
- Fastest way to compute image dataset channel wise
- Does using image sprites make sense in HTTP/2?
- How to extract zip file using dotnet framework 4.0
- Fiddler doesn't decompress gzip responses
- Which computer vision library & algorithm(s), for
Image Quality Assessment is a rapidly developing research field. As you don't mention being able to access the original (uncompressed) images, you are interested in no reference image quality assessment. This is actually a pretty hard problem, but here are some points to get you started:
Regardless of what metric you use, think about how you will deal with false positives/negatives. As opposed to simple thresholding, I'd use the metric result to sort the images and then snip the end of the list that looks like it contains only blurry images.
Your task will be a lot simpler if your image set contains fairly similar content (e.g. faces only). This is because the image quality assessment metrics can often be influenced by image content, unfortunately.
Google Scholar is truly your friend here. I wish I could give you a concrete solution, but I don't have one yet -- if I did, I'd be a very successful Masters student.
UPDATE:
Just thought of another idea: for each image, re-compress the image with JPEG and examine the change in file size before and after re-compression. If the file size after re-compression is significantly smaller than before, then it's likely the image is not heavily compressed, because it had some significant detail that was removed by re-compression. Otherwise (very little difference or file size after re-compression is greater) it is likely that the image was heavily compressed.
The use of the quality setting during re-compression will allow you to determine what exactly heavily compressed means.
If you're on Linux, this shouldn't be too hard to implement using bash and imageMagick's convert utility.
You can try other variations of this approach:
Let me know how you go.
I had many photos shot to an ancient book (so similar layout, two pages per image), but some were much blurred, to the point that the text could not be read. I searched for a ready-made batch script to find the most blurred one, but I didn't find any useful, so I used another part of script got on the net (based on ImageMagick, but no longer working; I couldn't retrieve the author for the credits!), useful to assessing the blur level of a single image, tweaked it, and automatised it over a whole folder. I uploaded here:
https://gist.github.com/888239
hoping it will be useful for someone else. It works on a Linux system, and uses ImageMagick (and some usually command line installed tools, as gawk, sort, grep, etc.).
One simple heuristic could be to look at
width * height * color depth < sigma * file size
. You would have to determine a good value forsigma
, of course.sigma
would be dependent on the expected entropy of the images you are looking at.