I'm interested in finding out how the recently-released (http://mirror.facebook.com/facebook/hive/hadoop-0.17/) Hive compares to HBase in terms of performance. The SQL-like interface used by Hive is very much preferable to the HBase API we have implemented.
相关问题
- Spark on Yarn Container Failure
- enableHiveSupport throws error in java spark code
- spark select and add columns with alias
- Unable to generate jar file for Hadoop
-
hive: cast array
> into map
相关文章
- 在hive sql里怎么把"2020-10-26T08:41:19.000Z"这个字符串转换成年月日
- Java写文件至HDFS失败
- mapreduce count example
- SQL query Frequency Distribution matrix for produc
- Cloudera 5.6: Parquet does not support date. See H
- hbase-client 2.0.x error
- Could you give me any clue Why 'Cannot call me
- converting to timestamp with time zone failed on A
It's hard to find much about Hive, but I found this snippet on the Hive site that leans heavily in favor of HBase (bold added):
Hive is based on Hadoop which is a batch processing system. Accordingly, this system does not and cannot promise low latencies on queries. The paradigm here is strictly of submitting jobs and being notified when the jobs are completed as opposed to real time queries. As a result it should not be compared with systems like Oracle where analysis is done on a significantly smaller amount of data but the analysis proceeds much more iteratively with the response times between iterations being less than a few minutes. For Hive queries response times for even the smallest jobs can be of the order of 5-10 minutes and for larger jobs this may even run into hours.
Since HBase and HyperTable are all about performance (being modeled on Google's BigTable), they sound like they would certainly be much faster than Hive, at the cost of functionality and a higher learning curve (e.g., they don't have joins or the SQL-like syntax).
From one perspective, Hive consists of five main components: a SQL-like grammar and parser, a query planner, a query execution engine, a metadata repository, and a columnar storage layout. Its primary focus is data warehouse-style analytical workloads, so low latency retrieval of values by key is not necessary.
HBase has its own metadata repository and columnar storage layout. It is possible to author HiveQL queries over HBase tables, allowing HBase to take advantage of Hive's grammar and parser, query planner, and query execution engine. See http://wiki.apache.org/hadoop/Hive/HBaseIntegration for more details.
As of the most recent Hive releases, a lot has changed that requires a small update as Hive and HBase are now integrated. What this means is that Hive can be used as a query layer to an HBase datastore. Now if people are looking for alternative HBase interfaces, Pig also offers a really nice way of loading and storing HBase data. Additionally, it looks like Cloudera Impala may offer substantial performance Hive based queries on top of HBase. They are claim up to 45x faster queries over traditional Hive setups.
To my humble knowledge, Hive is more comparable to Pig. Hive is SQL-like and Pig is script based. Hive seems to be more complicated with query optimization and execution engines as well as requires end user needs to specify schema parameters(partition etc). Both are intend to process text files, or sequenceFiles.
HBase is for key value data store and retrieve...you can scan or filter on those key value pairs(rows). You can not do queries on (key,value) rows.
Hive and HBase are used for different purpose.
Hive:
Pros:
Cons:
HBase:
Pros:
Cons:
Summary:
Hive can be used for analytical queries while HBase for real-time querying. Data can even be read and written from Hive to HBase and back again.
Hive is an analytics tool. Just like pig, it was designed for ad hoc batch processing of potentially enourmous amounts of data by leveraging map reduce. Think terrabytes. Imagine trying to do that in a relational database...
HBase is a column based key value store based on BigTable. You can't do queries per se, though you can run map reduce jobs over HBase. It's primary use case is fetching rows by key, or scanning ranges of rows. A major feature is being able to have data locality when scanning across ranges of row keys for a 'family' of columns.