In plain English, what are the disadvantages and advantages of using
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
in a query for .NET applications and reporting services applications?
In plain English, what are the disadvantages and advantages of using
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
in a query for .NET applications and reporting services applications?
Regarding reporting, we use it on all of our reporting queries to prevent a query from bogging down databases. We can do that because we're pulling historical data, not up-to-the-microsecond data.
This will give you dirty reads, and show you transactions that's not committed yet. That is the most obvious answer. I don't think its a good idea to use this just to speed up your reads. There is other ways of doing that if you use a good database design.
Its also interesting to note whats not happening. READ UNCOMMITTED does not only ignore other table locks. It's also not causing any locks in its own.
Consider you are generating a large report, or you are migrating data out of your database using a large and possibly complex SELECT statement. This will cause a shared lock that's may be escalated to a shared table lock for the duration of your transaction. Other transactions may read from the table, but updates are impossible. This may be a bad idea if its a production database since the production may stop completely.
If you are using READ UNCOMMITTED you will not set a shared lock on the table. You may get the result from some new transactions or you may not depending where it the table the data were inserted and how long your SELECT transaction have read. You may also get the same data twice if for example a page split occurs (the data will be copied to another location in the data file).
So, if its very important for you that data can be inserted while doing your SELECT, READ UNCOMMITTED may make sense. You have to consider that your report may contain some errors, but if its based on millions of rows and only a few of them are updated while selecting the result this may be "good enough". Your transaction may also fail all together since the uniqueness of a row may not be guaranteed.
A better way altogether may be to use SNAPSHOT ISOLATION LEVEL but your applications may need some adjustments to use this. One example of this is if your application takes an exclusive lock on a row to prevent others from reading it and go into edit mode in the UI. SNAPSHOT ISOLATION LEVEL does also come with a considerable performance penalty (especially on disk). But you may overcome that by throwing hardware on the problem. :)
You may also consider restoring a backup of the database to use for reporting or loading data into a data warehouse.
I always use READ UNCOMMITTED now. It's fast with the least issues. When using other isolations you will almost always come across some Blocking issues.
As long as you use Auto Increment fields and pay a little more attention to inserts then your fine, and you can say goodbye to blocking issues.
You can make errors with READ UNCOMMITED but to be honest, it is very easy make sure your inserts are full proof. Inserts/Updates which use the results from a select are only thing you need to watch out for. (Use READ COMMITTED here, or ensure that dirty reads aren't going to cause a problem)
So go the Dirty Reads (Specially for big reports), your software will run smoother...
This can be useful to see the progress of long insert queries, make any rough estimates (like
COUNT(*)
or roughSUM(*)
) etc.In other words, the results the dirty read queries return are fine as long as you treat them as estimates and don't make any critical decisions based upon them.
It can be used for a simple table, for example in an insert-only audit table, where there is no update to existing row, and no fk to other table. The insert is a simple insert, which has no or little chance of rollback.
This isolation level allows dirty reads. One transaction may see uncommitted changes made by some other transaction.
To maintain the highest level of isolation, a DBMS usually acquires locks on data, which may result in a loss of concurrency and a high locking overhead. This isolation level relaxes this property.
You may want to check out the Wikipedia article on
READ UNCOMMITTED
for a few examples and further reading.You may also be interested in checking out Jeff Atwood's blog article on how he and his team tackled a deadlock issue in the early days of Stack Overflow. According to Jeff:
One alternative to the
READ UNCOMMITTED
level that you may want to consider is theREAD COMMITTED SNAPSHOT
. Quoting Jeff again: