Calling C/C++ from Python?

2018-12-31 03:28发布

What would be the quickest way to construct a Python binding to a C or C++ library?

(I am using Windows if this matters.)

标签: c++ python c
14条回答
无色无味的生活
2楼-- · 2018-12-31 03:29

The question is how to call a C function from Python, if I understood correctly. Then the best bet are Ctypes (BTW portable across all variants of Python).

>>> from ctypes import *
>>> libc = cdll.msvcrt
>>> print libc.time(None)
1438069008
>>> printf = libc.printf
>>> printf("Hello, %s\n", "World!")
Hello, World!
14
>>> printf("%d bottles of beer\n", 42)
42 bottles of beer
19

For a detailed guide you may want to refer to my blog article.

查看更多
明月照影归
3楼-- · 2018-12-31 03:32

The quickest way to do this is using SWIG.

Example from SWIG tutorial:

/* File : example.c */
int fact(int n) {
    if (n <= 1) return 1;
    else return n*fact(n-1);
}

Interface file:

/* example.i */
%module example
%{
/* Put header files here or function declarations like below */
extern int fact(int n);
%}

extern int fact(int n);

Building a Python module on Unix:

swig -python example.i
gcc -fPIC -c example.c example_wrap.c -I/usr/local/include/python2.7
gcc -shared example.o example_wrap.o -o _example.so

Usage:

>>> import example
>>> example.fact(5)
120

Note that you have to have python-dev. Also in some systems python header files will be in /usr/include/python2.7 based on the way you have installed it.

From the tutorial:

SWIG is a fairly complete C++ compiler with support for nearly every language feature. This includes preprocessing, pointers, classes, inheritance, and even C++ templates. SWIG can also be used to package structures and classes into proxy classes in the target language — exposing the underlying functionality in a very natural manner.

查看更多
时光乱了年华
4楼-- · 2018-12-31 03:33

This paper, claiming Python to be all a scientist needs, basically says: First prototype everything in Python. Then when you need to speed a part up, use SWIG and translate this part to C.

查看更多
琉璃瓶的回忆
5楼-- · 2018-12-31 03:33

First you should decide what is your particular purpose. The official Python documentation on extending and embedding the Python interpreter was mentioned above, I can add a good overview of binary extensions. The use cases can be divided into 3 categories:

  • accelerator modules: to run faster than the equivalent pure Python code runs in CPython.
  • wrapper modules: to expose existing C interfaces to Python code.
  • low level system access: to access lower level features of the CPython runtime, the operating system, or the underlying hardware.

In order to give some broader perspective for other interested and since your initial question is a bit vague ("to a C or C++ library") I think this information might be interesting to you. On the link above you can read on disadvantages of using binary extensions and its alternatives.

Apart from the other answers suggested, if you want an accelerator module, you can try Numba. It works "by generating optimized machine code using the LLVM compiler infrastructure at import time, runtime, or statically (using the included pycc tool)".

查看更多
浮光初槿花落
6楼-- · 2018-12-31 03:34

For modern C++, use cppyy: http://cppyy.readthedocs.io/en/latest/

It's based on Cling, the C++ interpreter for Clang/LLVM. Bindings are at run-time and no additional intermediate language is necessary. Thanks to Clang, it supports C++17.

Install it using pip:

    $ pip install cppyy

For small projects, simply load the relevant library and the headers that you are interested in. E.g. take the code from the ctypes example is this thread, but split in header and code sections:

    $ cat foo.h
    class Foo {
    public:
        void bar();
    };

    $ cat foo.cpp
    #include "foo.h"
    #include <iostream>

    void Foo::bar() { std::cout << "Hello" << std::endl; }

Compile it:

    $ g++ -c -fPIC foo.cpp -o foo.o
    $ g++ -shared -Wl,-soname,libfoo.so -o libfoo.so  foo.o

and use it:

    $ python
    >>> import cppyy
    >>> cppyy.include("foo.h")
    >>> cppyy.load_library("foo")
    >>> from cppyy.gbl import Foo
    >>> f = Foo()
    >>> f.bar()
    Hello
    >>>

Large projects are supported with auto-loading of prepared reflection information and the cmake fragments to create them, so that users of installed packages can simply run:

    $ python
    >>> import cppyy
    >>> f = cppyy.gbl.Foo()
    >>> f.bar()
    Hello
    >>>

Thanks to LLVM, advanced features are possible, such as automatic template instantiation. To continue the example:

    >>> v = cppyy.gbl.std.vector[cppyy.gbl.Foo]()
    >>> v.push_back(f)
    >>> len(v)
    1
    >>> v[0].bar()
    Hello
    >>>

Note: I'm the author of cppyy.

查看更多
梦该遗忘
7楼-- · 2018-12-31 03:36

I started my journey in the Python <-> C++ binding from this page, with the objective of linking high level data types (multidimensional STL vectors with Python lists) :-)

Having tried the solutions based on both ctypes and boost.python (and not being a software engineer) I have found them complex when high level datatypes binding is required, while I have found SWIG much more simple for such cases.

This example uses therefore SWIG, and it has been tested in Linux (but SWIG is available and is widely used in Windows too).

The objective is to make a C++ function available to Python that takes a matrix in form of a 2D STL vector and returns an average of each row (as a 1D STL vector).

The code in C++ ("code.cpp") is as follow:

#include <vector>
#include "code.h"

using namespace std;

vector<double> average (vector< vector<double> > i_matrix) {

  // Compute average of each row..
  vector <double> averages;
  for (int r = 0; r < i_matrix.size(); r++){
    double rsum = 0.0;
    double ncols= i_matrix[r].size();
    for (int c = 0; c< i_matrix[r].size(); c++){
      rsum += i_matrix[r][c];
    }
    averages.push_back(rsum/ncols);
  }
  return averages;
}

The equivalent header ("code.h") is:

#ifndef _code
#define _code

#include <vector>

std::vector<double> average (std::vector< std::vector<double> > i_matrix);

#endif

We first compile the C++ code to create an object file:

g++ -c -fPIC code.cpp

We then define a SWIG interface definition file ("code.i") for our C++ functions.

%module code
%{
#include "code.h"
%}
%include "std_vector.i"
namespace std {

  /* On a side note, the names VecDouble and VecVecdouble can be changed, but the order of first the inner vector matters! */
  %template(VecDouble) vector<double>;
  %template(VecVecdouble) vector< vector<double> >;
}

%include "code.h"

Using SWIG, we generate a C++ interface source code from the SWIG interface definition file..

swig -c++ -python code.i

We finally compile the generated C++ interface source file and link everything together to generate a shared library that is directly importable by Python (the "_" matters):

g++ -c -fPIC code_wrap.cxx  -I/usr/include/python2.7 -I/usr/lib/python2.7
g++ -shared -Wl,-soname,_code.so -o _code.so code.o code_wrap.o

We can now use the function in Python scripts:

#!/usr/bin/env python

import code
a= [[3,5,7],[8,10,12]]
print a
b = code.average(a)
print "Assignment done"
print a
print b
查看更多
登录 后发表回答