I am attempting to generate QR codes on an extremely limited embedded platform. Everything in the specification seems fairly straightforward except for generating the error correction codewords. I have looked at a bunch of existing implementations, and they all try to implement a bunch of polynomial math that goes straight over my head, particularly with regards to the Galois fields. The most straightforward way I can see, both in mathematical complexity and in memory requirements is a circuit concept that is laid out in the spec itself:
With their description, I am fairly confident I could implement this with the exception of the parts labeled GF(256) addition and GF(256) Multiplication.
They offer this help:
The polynomial arithmetic for QR Code shall be calculated using bit-wise modulo 2 arithmetic and byte-wise modulo 100011101 arithmetic. This is a Galois field of 2^8 with 100011101 representing the field's prime modulus polynomial x^8+x^4+x^3+x^2+1.
which is all pretty much greek to me.
So my question is this: What is the easiest way to perform addition and multiplication in this kind of Galois field arithmetic? Assume both input numbers are 8 bits wide, and my output needs to be 8 bits wide also. Several implementations precalculate, or hardcode in two lookup tables to help with this, but I am not sure how those are calculated, or how I would use them in this situation. I would rather not take the 512 byte memory hit for the two tables, but it really depends on what the alternative is. I really just need help understanding how to do a single multiplication and addition operation in this circuit.
In practice only one table is needed. That would be for the GP(256) multiply. Note that all arithmetic is carry-less, meaning that there is no carry-propagation.
Addition and subtraction without carry is equivalent to an xor.
So in GF(256),
a + b
anda - b
are both equivalent toa xor b
.GF(256) multiplication is also carry-less, and can be done using carry-less multiplication in a similar way with carry-less addition/subtraction. This can be done efficiently with hardware support via say Intel's CLMUL instruction set.
However, the hard part, is reducing the modulo
100011101
. In normal integer division, you do it using a series of compare/subtract steps. In GF(256), you do it in a nearly identical manner using a series of compare/xor steps.In fact, it's bad enough where it's still faster to just precompute all 256 x 256 multiplies and put them into a 65536-entry look-up table.
page 3 of the following pdf has a pretty good reference on GF256 arithmetic:
http://www.eecs.harvard.edu/~michaelm/CS222/eccnotes.pdf
(I'm following up on the pointer to zxing in the first answer, since I'm the author.)
The answer about addition is exactly right; that's why working in this field is convenient on a computer.
See http://code.google.com/p/zxing/source/browse/trunk/core/src/com/google/zxing/common/reedsolomon/GenericGF.java
Yes multiplication works, and is for GF256. a * b is really the same as exp(log(a) + log(b)). And because GF256 has only 256 elements, there are only 255 unique powers of "x", and same for log. So these are easy to put in a lookup table. The tables would "wrap around" at 256, so that is why you see the "% size". "/ size" is slightly harder to explain in a sentence -- it's because really 1-255 "wrap around", not 0-255. So it's not quite just a simple modulus that's needed.
The final piece perhaps is how you reduce modulo an irreducible polynomial. The irreducibly polynomial is x^8 plus some lower-power terms, right -- call it I(x) = x^8 + R(x). And the polynomial is congruent to 0 in the field, by definition; I(x) == 0. So x^8 == -R(x). And, conveniently, addition and subtraction are the same, so x^8 == -R(x) == R(x).
The only time we need to reduce higher-power polynomials is when constructing the exponents table. You just keep multiplying by x (which is a shift left) until it gets too big -- gets an x^8 term. But x^8 is the same as R(x). So you take out the x^8 and add in R(x). R(x) merely has powers up to x^7 so it's all in a byte still, all in GF(256). And you know how to add in this field.
Helps?