What's the rationale for null terminated strin

2019-01-02 21:38发布

As much as I love C and C++, I can't help but scratch my head at the choice of null terminated strings:

  • Length prefixed (i.e. Pascal) strings existed before C
  • Length prefixed strings make several algorithms faster by allowing constant time length lookup.
  • Length prefixed strings make it more difficult to cause buffer overrun errors.
  • Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string. On 16 bit machines this is a single byte. On 64 bit machines, 4GB is a reasonable string length limit, but even if you want to expand it to the size of the machine word, 64 bit machines usually have ample memory making the extra seven bytes sort of a null argument. I know the original C standard was written for insanely poor machines (in terms of memory), but the efficiency argument doesn't sell me here.
  • Pretty much every other language (i.e. Perl, Pascal, Python, Java, C#, etc) use length prefixed strings. These languages usually beat C in string manipulation benchmarks because they are more efficient with strings.
  • C++ rectified this a bit with the std::basic_string template, but plain character arrays expecting null terminated strings are still pervasive. This is also imperfect because it requires heap allocation.
  • Null terminated strings have to reserve a character (namely, null), which cannot exist in the string, while length prefixed strings can contain embedded nulls.

Several of these things have come to light more recently than C, so it would make sense for C to not have known of them. However, several were plain well before C came to be. Why would null terminated strings have been chosen instead of the obviously superior length prefixing?

EDIT: Since some asked for facts (and didn't like the ones I already provided) on my efficiency point above, they stem from a few things:

  • Concat using null terminated strings requires O(n + m) time complexity. Length prefixing often require only O(m).
  • Length using null terminated strings requires O(n) time complexity. Length prefixing is O(1).
  • Length and concat are by far the most common string operations. There are several cases where null terminated strings can be more efficient, but these occur much less often.

From answers below, these are some cases where null terminated strings are more efficient:

  • When you need to cut off the start of a string and need to pass it to some method. You can't really do this in constant time with length prefixing even if you are allowed to destroy the original string, because the length prefix probably needs to follow alignment rules.
  • In some cases where you're just looping through the string character by character you might be able to save a CPU register. Note that this works only in the case that you haven't dynamically allocated the string (Because then you'd have to free it, necessitating using that CPU register you saved to hold the pointer you originally got from malloc and friends).

None of the above are nearly as common as length and concat.

There's one more asserted in the answers below:

  • You need to cut off the end of the string

but this one is incorrect -- it's the same amount of time for null terminated and length prefixed strings. (Null terminated strings just stick a null where you want the new end to be, length prefixers just subtract from the prefix.)

17条回答
可以哭但决不认输i
2楼-- · 2019-01-02 22:26

From the horse's mouth

None of BCPL, B, or C supports character data strongly in the language; each treats strings much like vectors of integers and supplements general rules by a few conventions. In both BCPL and B a string literal denotes the address of a static area initialized with the characters of the string, packed into cells. In BCPL, the first packed byte contains the number of characters in the string; in B, there is no count and strings are terminated by a special character, which B spelled *e. This change was made partially to avoid the limitation on the length of a string caused by holding the count in an 8- or 9-bit slot, and partly because maintaining the count seemed, in our experience, less convenient than using a terminator.

Dennis M Ritchie, Development of the C Language

查看更多
我欲成王,谁敢阻挡
3楼-- · 2019-01-02 22:26

I think, it has historical reasons and found this in wikipedia:

At the time C (and the languages that it was derived from) were developed, memory was extremely limited, so using only one byte of overhead to store the length of a string was attractive. The only popular alternative at that time, usually called a "Pascal string" (though also used by early versions of BASIC), used a leading byte to store the length of the string. This allows the string to contain NUL and made finding the length need only one memory access (O(1) (constant) time). But one byte limits the length to 255. This length limitation was far more restrictive than the problems with the C string, so the C string in general won out.

查看更多
我命由我不由天
4楼-- · 2019-01-02 22:27

Obviously for performance and safety, you'll want to keep the length of a string while you're working with it rather than repeatedly performing strlen or the equivalent on it. However, storing the length in a fixed location just before the string contents is an incredibly bad design. As Jörgen pointed out in the comments on Sanjit's answer, it precludes treating the tail of a string as a string, which for example makes a lot of common operations like path_to_filename or filename_to_extension impossible without allocating new memory (and incurring the possibility of failure and error handling). And then of course there's the issue that nobody can agree how many bytes the string length field should occupy (plenty of bad "Pascal string" languages used 16-bit fields or even 24-bit fields which preclude processing of long strings).

C's design of letting the programmer choose if/where/how to store the length is much more flexible and powerful. But of course the programmer has to be smart. C punishes stupidity with programs that crash, grind to a halt, or give your enemies root.

查看更多
Anthone
5楼-- · 2019-01-02 22:30

C doesn't have a string as part of the language. A 'string' in C is just a pointer to char. So maybe you're asking the wrong question.

"What's the rationale for leaving out a string type" might be more relevant. To that I would point out that C is not an object oriented language and only has basic value types. A string is a higher level concept that has to be implemented by in some way combining values of other types. C is at a lower level of abstraction.

in light of the raging squall below:

I just want to point out that I'm not trying to say this is a stupid or bad question, or that the C way of representing strings is the best choice. I'm trying to clarify that the question would be more succinctly put if you take into account the fact that C has no mechanism for differentiating a string as a datatype from a byte array. Is this the best choice in light of the processing and memory power of todays computers? Probably not. But hindsight is always 20/20 and all that :)

查看更多
贪生不怕死
6楼-- · 2019-01-02 22:30

Lazyness, register frugality and portability considering the assembly gut of any language, especially C which is one step above assembly (thus inheriting a lot of assembly legacy code). You would agree as a null char would be useless in those ASCII days, it (and probably as good as an EOF control char ).

let's see in pseudo code

function readString(string) // 1 parameter: 1 register or 1 stact entries
    pointer=addressOf(string) 
    while(string[pointer]!=CONTROL_CHAR) do
        read(string[pointer])
        increment pointer

total 1 register use

case 2

 function readString(length,string) // 2 parameters: 2 register used or 2 stack entries
     pointer=addressOf(string) 
     while(length>0) do 
         read(string[pointer])
         increment pointer
         decrement length

total 2 register used

That might seem shortsighted at that time, but considering the frugality in code and register ( which were PREMIUM at that time, the time when you know, they use punch card ). Thus being faster ( when processor speed could be counted in kHz), this "Hack" was pretty darn good and portable to register-less processor with ease.

For argument sake I will implement 2 common string operation

stringLength(string)
     pointer=addressOf(string)
     while(string[pointer]!=CONTROL_CHAR) do
         increment pointer
     return pointer-addressOf(string)

complexity O(n) where in most case PASCAL string is O(1) because the length of the string is pre-pended to the string structure (that would also mean that this operation would have to be carried in an earlier stage).

concatString(string1,string2)
     length1=stringLength(string1)
     length2=stringLength(string2)
     string3=allocate(string1+string2)
     pointer1=addressOf(string1)
     pointer3=addressOf(string3)
     while(string1[pointer1]!=CONTROL_CHAR) do
         string3[pointer3]=string1[pointer1]
         increment pointer3
         increment pointer1
     pointer2=addressOf(string2)
     while(string2[pointer2]!=CONTROL_CHAR) do
         string3[pointer3]=string2[pointer2]
         increment pointer3
         increment pointer1
     return string3

complexity O(n) and prepending the string length wouldn't change the complexity of the operation, while I admit it would take 3 time less time.

On another hand, if you use PASCAL string you would have to redesign your API for taking in account register length and bit-endianness, PASCAL string got the well known limitation of 255 char (0xFF) beacause the length was stored in 1 byte (8bits), and it you wanted a longer string (16bits->anything) you would have to take in account the architecture in one layer of your code, that would mean in most case incompatible string APIs if you wanted longer string.

Example:

One file was written with your prepended string api on an 8 bit computer and then would have to be read on say a 32 bit computer, what would the lazy program do considers that your 4bytes are the length of the string then allocate that lot of memory then attempt to read that many bytes. Another case would be PPC 32 byte string read(little endian) onto a x86 (big endian), of course if you don't know that one is written by the other there would be trouble. 1 byte length (0x00000001) would become 16777216 (0x0100000) that is 16 MB for reading a 1 byte string. Of course you would say that people should agree on one standard but even 16bit unicode got little and big endianness.

Of course C would have its issues too but, would be very little affected by the issues raised here.

查看更多
登录 后发表回答