As much as I love C and C++, I can't help but scratch my head at the choice of null terminated strings:
- Length prefixed (i.e. Pascal) strings existed before C
- Length prefixed strings make several algorithms faster by allowing constant time length lookup.
- Length prefixed strings make it more difficult to cause buffer overrun errors.
- Even on a 32 bit machine, if you allow the string to be the size of available memory, a length prefixed string is only three bytes wider than a null terminated string. On 16 bit machines this is a single byte. On 64 bit machines, 4GB is a reasonable string length limit, but even if you want to expand it to the size of the machine word, 64 bit machines usually have ample memory making the extra seven bytes sort of a null argument. I know the original C standard was written for insanely poor machines (in terms of memory), but the efficiency argument doesn't sell me here.
- Pretty much every other language (i.e. Perl, Pascal, Python, Java, C#, etc) use length prefixed strings. These languages usually beat C in string manipulation benchmarks because they are more efficient with strings.
- C++ rectified this a bit with the
std::basic_string
template, but plain character arrays expecting null terminated strings are still pervasive. This is also imperfect because it requires heap allocation. - Null terminated strings have to reserve a character (namely, null), which cannot exist in the string, while length prefixed strings can contain embedded nulls.
Several of these things have come to light more recently than C, so it would make sense for C to not have known of them. However, several were plain well before C came to be. Why would null terminated strings have been chosen instead of the obviously superior length prefixing?
EDIT: Since some asked for facts (and didn't like the ones I already provided) on my efficiency point above, they stem from a few things:
- Concat using null terminated strings requires O(n + m) time complexity. Length prefixing often require only O(m).
- Length using null terminated strings requires O(n) time complexity. Length prefixing is O(1).
- Length and concat are by far the most common string operations. There are several cases where null terminated strings can be more efficient, but these occur much less often.
From answers below, these are some cases where null terminated strings are more efficient:
- When you need to cut off the start of a string and need to pass it to some method. You can't really do this in constant time with length prefixing even if you are allowed to destroy the original string, because the length prefix probably needs to follow alignment rules.
- In some cases where you're just looping through the string character by character you might be able to save a CPU register. Note that this works only in the case that you haven't dynamically allocated the string (Because then you'd have to free it, necessitating using that CPU register you saved to hold the pointer you originally got from malloc and friends).
None of the above are nearly as common as length and concat.
There's one more asserted in the answers below:
- You need to cut off the end of the string
but this one is incorrect -- it's the same amount of time for null terminated and length prefixed strings. (Null terminated strings just stick a null where you want the new end to be, length prefixers just subtract from the prefix.)
The question is asked as a
Length Prefixed Strings (LPS)
vszero terminated strings (SZ)
thing, but mostly expose benefits of length prefixed strings. That may seem overwhelming, but to be honest we should also consider drawbacks of LPS and advantages of SZ.As I understand it, the question may even be understood as a biased way to ask "what are the advantages of Zero Terminated Strings ?".
Advantages (I see) of Zero Terminated Strings:
"this\0is\0valid\0C"
. Is it a string ? or four strings ? Or a bunch of bytes...char a[3] = "foo";
is valid C (not C++) and won't put a final zero in a.char*
. Namely not to return the address of the string, but instead to return the actual data.That said, no need to complain in the rare case where standard C strings are indeed inefficient. Libs are available. If I followed that trend, I should complain that standard C does not include any regex support functions... but really everybody knows it's not a real problem as there is libraries available for that purpose. So when string manipulation efficiency is wanted, why not use a library like bstring ? Or even C++ strings ?
EDIT: I recently had a look to D strings. It is interesting enough to see that the solution choosed is neither a size prefix, nor zero termination. As in C, literal strings enclosed in double quotes are just short hand for immutable char arrays, and the language also has a string keyword meaning that (immutable char array).
But D arrays are much richer than C arrays. In the case of static arrays length is known at run-time so there is no need to store the length. Compiler has it at compile time. In the case of dynamic arrays, length is available but D documentation does not state where it is kept. For all we know, compiler could choose to keep it in some register, or in some variable stored far away from the characters data.
On normal char arrays or non literal strings there is no final zero, hence programmer has to put it itself if he wants to call some C function from D. In the particular case of literal strings, however the D compiler still put a zero at the end of each strings (to allow easy cast to C strings to make easier calling C function ?), but this zero is not part of the string (D does not count it in string size).
The only thing that disappointed me somewhat is that strings are supposed to be utf-8, but length apparently still returns a number of bytes (at least it's true on my compiler gdc) even when using multi-byte chars. It is unclear to me if it's a compiler bug or by purpose. (OK, I probably have found out what happened. To say to D compiler your source use utf-8 you have to put some stupid byte order mark at beginning. I write stupid because I know of not editor doing that, especially for UTF-8 that is supposed to be ASCII compatible).
Many design decisions surrounding C stem from the fact that when it was originally implemented, parameter passing was somewhat expensive. Given a choice between e.g.
versus
the latter would have been slightly cheaper (and thus preferred) since it only required passing one parameter rather than two. If the method being called didn't need to know the base address of the array nor the index within it, passing a single pointer combining the two would be cheaper than passing the values separately.
While there are many reasonable ways in which C could have encoded string lengths, the approaches that had been invented up to that time would have all required functions that should be able to work with part of a string to accept the base address of the string and the desired index as two separate parameters. Using zero-byte termination made it possible to avoid that requirement. Although other approaches would be better with today's machines (modern compilers often pass parameters in registers, and memcpy can be optimized in ways strcpy()-equivalents cannot) enough production code uses zero-byte terminated strings that it's hard to change to anything else.
PS--In exchange for a slight speed penalty on some operations, and a tiny bit of extra overhead on longer strings, it would have been possible to have methods that work with strings accept pointers directly to strings, bounds-checked string buffers, or data structures identifying substrings of another string. A function like "strcat" would have looked something like [modern syntax]
A little bigger than the K&R strcat method, but it would support bounds-checking, which the K&R method doesn't. Further, unlike the current method, it would be possible to easily concatenate an arbitrary substring, e.g.
Note that the lifetime of the string returned by temp_substring would be limited by those of
s
andsrc
, which ever was shorter (which is why the method requiresinf
to be passed in--if it was local, it would die when the method returned).In terms of memory cost, strings and buffers up to 64 bytes would have one byte of overhead (same as zero-terminated strings); longer strings would have slightly more (whether one allowed amounts of overhead between two bytes and the maximum required would be a time/space tradeoff). A special value of the length/mode byte would be used to indicate that a string function was given a structure containing a flag byte, a pointer, and a buffer length (which could then index arbitrarily into any other string).
Of course, K&R didn't implement any such thing, but that's most likely because they didn't want to spend much effort on string handling--an area where even today many languages seem rather anemic.
In many ways, C was primitive. And I loved it.
It was a step above assembly language, giving you nearly the same performance with a language that was much easier to write and maintain.
The null terminator is simple and requires no special support by the language.
Looking back, it doesn't seem that convenient. But I used assembly language back in the 80s and it seemed very convenient at the time. I just think software is continually evolving, and the platforms and tools continually get more and more sophisticated.
The null termination allows for fast pointer based operations.
gcc accept the codes below:
char s[4] = "abcd";
and it's ok if we treat is as an array of chars but not string. That is, we can access it with s[0], s[1], s[2], and s[3], or even with memcpy(dest, s, 4). But we'll get messy characters when we trying with puts(s), or worse with strcpy(dest, s).
According to Joel Spolsky in this blog post,
After seeing all the other answers here, I'm convinced that even if this is true, it's only part of the reason for C having null-terminated "strings". That post is quite illuminating as to how simple things like strings can actually be quite hard.