Using module 'subprocess' with timeout

2018-12-31 03:03发布

Here's the Python code to run an arbitrary command returning its stdout data, or raise an exception on non-zero exit codes:

proc = subprocess.Popen(
    cmd,
    stderr=subprocess.STDOUT,  # Merge stdout and stderr
    stdout=subprocess.PIPE,
    shell=True)

communicate is used to wait for the process to exit:

stdoutdata, stderrdata = proc.communicate()

The subprocess module does not support timeout--ability to kill a process running for more than X number of seconds--therefore, communicate may take forever to run.

What is the simplest way to implement timeouts in a Python program meant to run on Windows and Linux?

29条回答
步步皆殇っ
2楼-- · 2018-12-31 03:14

Once you understand full process running machinery in *unix, you will easily find simplier solution:

Consider this simple example how to make timeoutable communicate() meth using select.select() (available alsmost everythere on *nix nowadays). This also can be written with epoll/poll/kqueue, but select.select() variant could be a good example for you. And major limitations of select.select() (speed and 1024 max fds) are not applicapable for your task.

This works under *nix, does not create threads, does not uses signals, can be lauched from any thread (not only main), and fast enought to read 250mb/s of data from stdout on my machine (i5 2.3ghz).

There is a problem in join'ing stdout/stderr at the end of communicate. If you have huge program output this could lead to big memory usage. But you can call communicate() several times with smaller timeouts.

class Popen(subprocess.Popen):
    def communicate(self, input=None, timeout=None):
        if timeout is None:
            return subprocess.Popen.communicate(self, input)

        if self.stdin:
            # Flush stdio buffer, this might block if user
            # has been writing to .stdin in an uncontrolled
            # fashion.
            self.stdin.flush()
            if not input:
                self.stdin.close()

        read_set, write_set = [], []
        stdout = stderr = None

        if self.stdin and input:
            write_set.append(self.stdin)
        if self.stdout:
            read_set.append(self.stdout)
            stdout = []
        if self.stderr:
            read_set.append(self.stderr)
            stderr = []

        input_offset = 0
        deadline = time.time() + timeout

        while read_set or write_set:
            try:
                rlist, wlist, xlist = select.select(read_set, write_set, [], max(0, deadline - time.time()))
            except select.error as ex:
                if ex.args[0] == errno.EINTR:
                    continue
                raise

            if not (rlist or wlist):
                # Just break if timeout
                # Since we do not close stdout/stderr/stdin, we can call
                # communicate() several times reading data by smaller pieces.
                break

            if self.stdin in wlist:
                chunk = input[input_offset:input_offset + subprocess._PIPE_BUF]
                try:
                    bytes_written = os.write(self.stdin.fileno(), chunk)
                except OSError as ex:
                    if ex.errno == errno.EPIPE:
                        self.stdin.close()
                        write_set.remove(self.stdin)
                    else:
                        raise
                else:
                    input_offset += bytes_written
                    if input_offset >= len(input):
                        self.stdin.close()
                        write_set.remove(self.stdin)

            # Read stdout / stderr by 1024 bytes
            for fn, tgt in (
                (self.stdout, stdout),
                (self.stderr, stderr),
            ):
                if fn in rlist:
                    data = os.read(fn.fileno(), 1024)
                    if data == '':
                        fn.close()
                        read_set.remove(fn)
                    tgt.append(data)

        if stdout is not None:
            stdout = ''.join(stdout)
        if stderr is not None:
            stderr = ''.join(stderr)

        return (stdout, stderr)
查看更多
查无此人
3楼-- · 2018-12-31 03:15

Prepending the Linux command timeout isn't a bad workaround and it worked for me.

cmd = "timeout 20 "+ cmd
subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(output, err) = p.communicate()
查看更多
有味是清欢
4楼-- · 2018-12-31 03:16

timeout is now supported by call() and communicate() in the subprocess module (as of Python3.3):

import subprocess

subprocess.call("command", timeout=20, shell=True)

This will call the command and raise the exception

subprocess.TimeoutExpired

if the command doesn't finish after 20 seconds.

You can then handle the exception to continue your code, something like:

try:
    subprocess.call("command", timeout=20, shell=True)
except subprocess.TimeoutExpired:
    # insert code here

Hope this helps.

查看更多
大哥的爱人
5楼-- · 2018-12-31 03:16

I've implemented what I could gather from a few of these. This works in Windows, and since this is a community wiki, I figure I would share my code as well:

class Command(threading.Thread):
    def __init__(self, cmd, outFile, errFile, timeout):
        threading.Thread.__init__(self)
        self.cmd = cmd
        self.process = None
        self.outFile = outFile
        self.errFile = errFile
        self.timed_out = False
        self.timeout = timeout

    def run(self):
        self.process = subprocess.Popen(self.cmd, stdout = self.outFile, \
            stderr = self.errFile)

        while (self.process.poll() is None and self.timeout > 0):
            time.sleep(1)
            self.timeout -= 1

        if not self.timeout > 0:
            self.process.terminate()
            self.timed_out = True
        else:
            self.timed_out = False

Then from another class or file:

        outFile =  tempfile.SpooledTemporaryFile()
        errFile =   tempfile.SpooledTemporaryFile()

        executor = command.Command(c, outFile, errFile, timeout)
        executor.daemon = True
        executor.start()

        executor.join()
        if executor.timed_out:
            out = 'timed out'
        else:
            outFile.seek(0)
            errFile.seek(0)
            out = outFile.read()
            err = errFile.read()

        outFile.close()
        errFile.close()
查看更多
有味是清欢
6楼-- · 2018-12-31 03:17

Here is my solution, I was using Thread and Event:

import subprocess
from threading import Thread, Event

def kill_on_timeout(done, timeout, proc):
    if not done.wait(timeout):
        proc.kill()

def exec_command(command, timeout):

    done = Event()
    proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    watcher = Thread(target=kill_on_timeout, args=(done, timeout, proc))
    watcher.daemon = True
    watcher.start()

    data, stderr = proc.communicate()
    done.set()

    return data, stderr, proc.returncode

In action:

In [2]: exec_command(['sleep', '10'], 5)
Out[2]: ('', '', -9)

In [3]: exec_command(['sleep', '10'], 11)
Out[3]: ('', '', 0)
查看更多
一个人的天荒地老
7楼-- · 2018-12-31 03:17

This solution kills the process tree in case of shell=True, passes parameters to the process (or not), has a timeout and gets the stdout, stderr and process output of the call back (it uses psutil for the kill_proc_tree). This was based on several solutions posted in SO including jcollado's. Posting in response to comments by Anson and jradice in jcollado's answer. Tested in Windows Srvr 2012 and Ubuntu 14.04. Please note that for Ubuntu you need to change the parent.children(...) call to parent.get_children(...).

def kill_proc_tree(pid, including_parent=True):
  parent = psutil.Process(pid)
  children = parent.children(recursive=True)
  for child in children:
    child.kill()
  psutil.wait_procs(children, timeout=5)
  if including_parent:
    parent.kill()
    parent.wait(5)

def run_with_timeout(cmd, current_dir, cmd_parms, timeout):
  def target():
    process = subprocess.Popen(cmd, cwd=current_dir, shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE)

    # wait for the process to terminate
    if (cmd_parms == ""):
      out, err = process.communicate()
    else:
      out, err = process.communicate(cmd_parms)
    errcode = process.returncode

  thread = Thread(target=target)
  thread.start()

  thread.join(timeout)
  if thread.is_alive():
    me = os.getpid()
    kill_proc_tree(me, including_parent=False)
    thread.join()
查看更多
登录 后发表回答