I've been guilty of having a 1-to-1 relationship between my interfaces and concrete classes when using dependency injection. When I need to add a method to an interface, I end up breaking all the classes that implement the interface.
This is a simple example, but let's assume that I need to inject an ILogger
into one of my classes.
public interface ILogger
{
void Info(string message);
}
public class Logger : ILogger
{
public void Info(string message) { }
}
Having a 1-to-1 relationship like this feels like a code smell. Since I only have a single implementation, are there any potentially issues if I create a class and mark the Info
method as virtual to override in my tests instead of having to create an interface just for a single class?
public class Logger
{
public virtual void Info(string message)
{
// Log to file
}
}
If I needed another implementation, I can override the Info
method:
public class SqlLogger : Logger
{
public override void Info(string message)
{
// Log to SQL
}
}
If each of these classes have specific properties or methods that would create a leaky abstraction, I could extract out a base class:
public class Logger
{
public virtual void Info(string message)
{
throw new NotImplementedException();
}
}
public class SqlLogger : Logger
{
public override void Info(string message) { }
}
public class FileLogger : Logger
{
public override void Info(string message) { }
}
The reason why I didn't mark the base class as abstract is because if I ever wanted to add another method, I wouldn't break existing implementations. For example, if my FileLogger
needed a Debug
method, I can update the base class Logger
without breaking the existing SqlLogger
.
public class Logger
{
public virtual void Info(string message)
{
throw new NotImplementedException();
}
public virtual void Debug(string message)
{
throw new NotImplementedException();
}
}
public class SqlLogger : Logger
{
public override void Info(string message) { }
}
public class FileLogger : Logger
{
public override void Info(string message) { }
public override void Debug(string message) { }
}
Again, this is a simple example, but when I should I prefer an interface?
The "Quick" Answer
I would stick with interfaces. They are designed to be contracts for consumption for external entities.
@JakubKonecki mentioned multiple inheritance. I think this is the biggest reason to stick with interfaces as it will become very apparent on the consumer side if you force them to take a base class... no one likes base classes being thrust upon them.
The Updated "Quick" Answer
You have stated issues with interface implementations outside your control. A good approach is to simply create a new interface inheriting from the old one and fix your own implementation. You can then notify the other teams that a new interface is available. Over time, you can deprecate older interfaces.
Don't forget you can use the support of explicit interface implementations to help maintain a nice divide between interfaces that are logically the same, but of different versions.
If you want all this to fit in with DI, then try not to define new interfaces and instead favour additions. Alternatively to limit client code changes, try to inherit new interfaces from old ones.
Implementation vs. Consumption
There is a difference between implementing the interface and consuming it. Adding a method breaks the implementation(s), but does not break the consumer.
Removing a method obviously breaks the consumer, but does not break the implementation - however you wouldn't do this if you are backwards-compatibility conscious for your consumers.
My Experiences
We frequently have a 1-to-1 relationship with interfaces. It is largely a formality but you occasionally get nice instances where interfaces are useful because we stub / mock test implementations, or we actually provide client-specific implementations. The fact that this frequently breaks that one implementation if we happen to change the interface isn't a code smell, in my opinion, it is simply how you work against interfaces.
Our interface-based approach is now standing us in good stead as we utilise techniques such as the factory pattern and elements of DI to improve an aged legacy code base. Testing was able to quickly take advantage of the fact that interfaces existed in the code base for many years before finding a "definitive" use (ie, not just 1-1 mappings with concrete classes).
Base Class Cons
Base classes are for sharing implementation details to common entities, the fact they are able to do something similar with sharing an API publicly is a by-product in my opinion. Interfaces are designed to share API publicly, so use them.
With base classes you could also potentially get leakage of implementation details, for example if you need to make something public for another part of the implementation to use. These are no conducive to maintaining a clean public API.
Breaking / Supporting Implementations
If you go down the interface route you may run into difficulty changing even the interface due to breaking contracts. Also, as you mention, you could break implementations outside of your control. There are two ways to tackle this problem:
I have witnessed the latter, I see it come in two guises:
MyInterfaceV1
,MyInterfaceV2
.MyInterfaceV2 : MyInterfaceV1
.I personally wouldn't choose to go down this route, I would choose to not support implementations from breaking changes. But sometimes we don't have this choice.
Some Code
You should always prefer the interface.
Yes, in some cases you will have the same methods on class and interface, but in more complex scenarios you won't. Also remember, that there is no multiple inheritance in .NET.
You should keep your interfaces in a separate assembly and your classes should be internal.
Another benefit of coding against interfaces is an ability to easily mock them in unit tests.
Your
ILogger
interface is breaking the interface segregation principle when you start addingDebug
,Error
, andCritical
methods besidesInfo
. Take a look at the horrible Log4Net ILog interface and you'll know what I'm talking about.Instead of creating a method per log severity, create a single method that takes a log object:
This completely solves all of your problems, because:
LogEntry
will be a simple DTO and you can add new properties to it, without breaking any client.ILogger
interface that map to that singleLog
method.Here's an example of such extension method:
For a more detailed discussion on this design, please read this.
I Prefer interfaces. Given stubs and mocks are also implementations (sort of), I always have at least two implementations of any interface. Also, Interfaces can be stubbed and mocked for tests.
Further, the contract angle that Adam Houldsworth mentions is very constructive. IMHO it makes the code cleaner than 1-1 implementations of interfaces make it smelly.