Is there a way to let Tensorflow print extra training metrics (e.g. batch accuracy) when using the Estimator API?
One can add summaries and view the result in Tensorboard (see another post), but I was wondering if there is an elegant way to get the scalar summary values printed while training. This already happens for training loss, e.g.:
loss = 0.672677, step = 2901 (52.995 sec)
but it would be nice to have e.g.
loss = 0.672677, accuracy = 0.54678, step = 2901 (52.995 sec)
without to much trouble. I am aware that most of the time it is more useful to plot test set accuracy (I am already doing this with a validation monitor), but in this case I am also interested in training batch accuracy.
You can also use the TensorBoard to see some graphics of the desired metrics. To do that, add the metric to a TensorFlow summary like this:
The cool thing when you use the
tf.estimator.Estimator
is that you don't need to add the summaries to aFileWriter
, since it's done automatically (merging and saving them every 100 steps by default).Don't forget to change this line as well, based on the
accuracy
parameter you just added:In order to see the TensorBoard you need to open a new terminal and type:
After that you will be able to see the graphics in your browser at
localhost:6006
.From what I've read it is not possible to change it by passing parameter. You can try to do by creating a logging hook and passing it into to estimator run.
In the body of
model_fn
function for your estimator:EDIT:
To see the output you must also set logging verbosity high enough (unless its your default):
tf.logging.set_verbosity(tf.logging.INFO)