X.509 Certificate validation with Java and Bouncyc

2019-01-21 20:41发布

through the bouncycastle wiki page I was able to understand how to create a X.509 root certificate and a certification request, but I do not quite understand how to proceed concept- and programming wise after that.

Lets assume party A does a cert request and gets his client certificate from the CA. How can some party B validate A's certificate? What kind of certificate does A need? A root certificate? A 'normal' client certificate?

And how does the validation work on programming level, if we assume that A has successfully send his certificate in DER or PEM format to B?

Any help is much appreciated.

Best Regards, Rob

2条回答
Bombasti
2楼-- · 2019-01-21 20:58

Ok, the idea behind CAs is as follows:

  • CAs are people everyone trusts. To this end, a selection of Trusted CAs is available in your browser/email client/even on my mobile. In your case, your public root key (certificate) should be in your application.
  • Users send requests to the CA for a certificate in PEM format with the public key. CAs do some (I leave this ambiguous deliberately) form of verification of the end user, such as charging them money or in the case of enhanced verification (green) certs, background checks.
  • If the CA doesn't think the user's request is valid, they communicate this somehow.
  • If they do, they sign the public key and produce a certificate containing this information. This is where you process the cert-req and turn it into an X.509 cert.
  • Other users come across our fictitious user and want to know if they can trust them. So, they take a look at the certificate and find it is digitally signed by someone they have in their trust list. So, the fact that they trust the root CA and only the root CA could sign (via their private key) this user's public key and the CA trusts the user, we deduce that the new user can trust mr fictitious.

On a programmatic level, you implement this by reading the X.509 certificate and working out who the CA is supposed to be. Given that CA's fingerprint, you find it in your database and verify the signature. If it matches, you have your chain of trust.

This works because, as I've said, only the CA can create the digital signature but anyone can verify it. It is exactly the reverse of the encryption concept. What you do is "encrypt with the private key" the data you wish to sign and verify that the "decrypt with the public key" equals the data you've got.

查看更多
倾城 Initia
3楼-- · 2019-01-21 21:04

From a programmer's perspective, you need a few things to validate an X.509 certificate.

  1. A set of "trust anchors"—the root certificates of CAs that you rely on. These should be protected from tampering, so that an attacker doesn't replace a CA certificate with his own fake. The public keys in these certificates are used to verify the digital signatures on other certificates.
  2. A collection of Intermediate certificates. The application might keep a collection of these, but most protocols, like SSL and S/MIME, that use certificates have a standard way to provide extra certificates. Storing these doesn't require any special care; their integrity is protected by the signature of a root CA.
  3. Revocation information. Even if a certificate was issued by a CA, it might have been revoked prematurely because the private key was disclosed, or the end entity changed their identity. (For example, a person switches jobs and a certificate with their old company's name in it is revoked.) CRLs or a web-service like OCSP can be used to get an update about the status of a certificate.

With these inputs available, you can use the built-in PKIX support to construct and validate a certificate path.

/* Givens. */
InputStream trustStoreInput = ...
char[] password = ...
List<X509Certificate> chain = ...
Collection<X509CRL> crls = ...

/* Construct a valid path. */
KeyStore anchors = KeyStore.getInstance(KeyStore.getDefaultType());
anchors.load(trustStoreInput, password);
X509CertSelector target = new X509CertSelector();
target.setCertificate(chain.get(0));
PKIXBuilderParameters params = new PKIXBuilderParameters(anchors, target);
CertStoreParameters intermediates = new CollectionCertStoreParameters(chain)
params.addCertStore(CertStore.getInstance("Collection", intermediates));
CertStoreParameters revoked = new CollectionCertStoreParameters(crls);
params.addCertStore(CertStore.getInstance("Collection", revoked));
CertPathBuilder builder = CertPathBuilder.getInstance("PKIX");
/* 
 * If build() returns successfully, the certificate is valid. More details 
 * about the valid path can be obtained through the PKIXBuilderResult.
 * If no valid path can be found, a CertPathBuilderException is thrown.
 */
PKIXBuilderResult r = (PKIXBuilderResult) builder.build(params);

An important thing to note is that if a path cannot be found, you don't get much information about the reason. This can be frustrating, but it is that way by design. In general, there are many potential paths. If they all fail for different reasons, how would the path builder decide what to report as the reason?

查看更多
登录 后发表回答