How to export data from Spark SQL to CSV

2019-01-21 12:47发布

This command works with HiveQL:

insert overwrite directory '/data/home.csv' select * from testtable;

But with Spark SQL I'm getting an error with an org.apache.spark.sql.hive.HiveQl stack trace:

java.lang.RuntimeException: Unsupported language features in query:
    insert overwrite directory '/data/home.csv' select * from testtable

Please guide me to write export to CSV feature in Spark SQL.

7条回答
Ridiculous、
2楼-- · 2019-01-21 13:16

You can use below statement to write the contents of dataframe in CSV format df.write.csv("/data/home/csv")

If you need to write the whole dataframe into a single CSV file, then use df.coalesce(1).write.csv("/data/home/sample.csv")

For spark 1.x, you can use spark-csv to write the results into CSV files

Below scala snippet would help

import org.apache.spark.sql.hive.HiveContext
// sc - existing spark context
val sqlContext = new HiveContext(sc)
val df = sqlContext.sql("SELECT * FROM testtable")
df.write.format("com.databricks.spark.csv").save("/data/home/csv")

To write the contents into a single file

import org.apache.spark.sql.hive.HiveContext
// sc - existing spark context
val sqlContext = new HiveContext(sc)
val df = sqlContext.sql("SELECT * FROM testtable")
df.coalesce(1).write.format("com.databricks.spark.csv").save("/data/home/sample.csv")
查看更多
太酷不给撩
3楼-- · 2019-01-21 13:18

Since Spark 2.X spark-csv is integrated as native datasource. Therefore, the necessary statement simplifies to (windows)

df.write
  .option("header", "true")
  .csv("file:///C:/out.csv")

or UNIX

df.write
  .option("header", "true")
  .csv("/var/out.csv")
查看更多
够拽才男人
4楼-- · 2019-01-21 13:18

With the help of spark-csv we can write to a CSV file.

val dfsql = sqlContext.sql("select * from tablename")
dfsql.write.format("com.databricks.spark.csv").option("header","true").save("output.csv")`
查看更多
Rolldiameter
5楼-- · 2019-01-21 13:22

The answer above with spark-csv is correct but there is an issue - the library creates several files based on the data frame partitioning. And this is not what we usually need. So, you can combine all partitions to one:

df.coalesce(1).
    write.
    format("com.databricks.spark.csv").
    option("header", "true").
    save("myfile.csv")

and rename the output of the lib (name "part-00000") to a desire filename.

This blog post provides more details: https://fullstackml.com/2015/12/21/how-to-export-data-frame-from-apache-spark/

查看更多
forever°为你锁心
6楼-- · 2019-01-21 13:25

The error message suggests this is not a supported feature in the query language. But you can save a DataFrame in any format as usual through the RDD interface (df.rdd.saveAsTextFile). Or you can check out https://github.com/databricks/spark-csv.

查看更多
Lonely孤独者°
7楼-- · 2019-01-21 13:28

enter code here IN DATAFRAME:

val p=spark.read.format("csv").options(Map("header"->"true","delimiter"->"^")).load("filename.csv")
查看更多
登录 后发表回答