I am trying to so something like Database Design for Tagging, except each of my tags are grouped into categories.
For example, let's say I have a database about vehicles. Let's say we actually don't know very much about vehicles, so we can't specify the columns all vehicles will have. Therefore we shall "tag" vehicles with information.
1. manufacture: Mercedes
model: SLK32 AMG
convertible: hardtop
2. manufacture: Ford
model: GT90
production phase: prototype
3. manufacture: Mazda
model: MX-5
convertible: softtop
Now as you can see all cars are tagged with their manufacture and model, but the other categories don't all match. Note that a car can only have one of each category. IE. A car can only have one manufacturer.
I want to design a database to support a search for all Mercedes, or to be able to list all manufactures.
My current design is something like this:
vehicles
int vid
String vin
vehicleTags
int vid
int tid
tags
int tid
String tag
int cid
categories
int cid
String category
I have all the right primary and foreign keys in place, except I can't handle the case where each car can only have one manufacturer. Or can I?
Can I add a foreign key constraint to the composite primary key in vehicleTags? IE. Could I add a constraint such that the composite primary key (vid, tid) can only be added to vehicleTags only if there isn't already a row in vehicleTags such that for the same vid, there isn't already a tid in the with the same cid?
My guess is no. I think the solution to this problem is add a cid column to vehicleTags, and make the new composite primary key (vid, cid). It would look like:
vehicleTags
int vid
int cid
int tid
This would prevent a car from having two manufacturers, but now I have duplicated the information that tid is in cid.
What should my schema be?
Tom noticed this problem in my database schema in my previous question, How do you do many to many table outer joins?
EDIT
I know that in the example manufacture should really be a column in the vehicle table, but let's say you can't do that. The example is just an example.
I think your solution is to simply add a manufacturer column to your vehicles table. It's an attribute that you know all the vehicles will have (i.e. cars don't spontaneously appear by themselves) and by making it a column in your vehicle table you solve the issue of having one and only one manufacturer for each vehicle. This approach would apply to any attributes that you know will be shared by all vehicles. You can then implement the tagging system for the other attributes that aren't universal.
So taking from your example the vehicle table would be something like:
I needed to solve this exact problem (same general domain and everything — auto parts). I found that the best solution to the problem was to use Lucene/Xapian/Ferret/Sphinx or whichever full-text indexer you prefer. Much better performance than what SQL can offer.
I needed to solve this exact problem (same general domain and everything — auto parts). I found that the best solution to the problem was to use Lucene/Xapian/Ferret/Sphinx or whichever full-text indexer you prefer. Much better performance than what SQL can offer.
These days, I almost never end up building a database-backed web app that doesn't involve a full-text indexer. This problem and the general issue of search just come up way too often to omit indexers from your toolbox.
This is yet another variation on the Entity-Attribute-Value design.
A more recognizable EAV table looks like the following:
Some people force
attr_name
to reference a lookup table of predefined attribute names, to limit the chaos.What you've done is simply spread an EAV table over three tables, but without improving the order of your metadata:
If you're going to use the EAV design, you only need the
vehicleTags
andcategories
tables.But keep in mind that you're mixing data with metadata. You lose the ability to apply certain constraints to your data model.
NOT NULL
constraint)?tag
column because that constraint would apply to all other tag values for other categories. You'd effectively restrict engine size and paint color to "soft top" as well.SQL databases don't work well with this model. It's extremely difficult to get right, and querying it becomes very complex. If you do continue to use SQL, you will be better off modeling the tables conventionally, with one column per attribute. If you have need to have "subtypes" then define a subordinate table per subtype (Class-Table Inheritance), or else use Single-Table Inheritance. If you have an unlimited variation in the attributes per entity, then use Serialized LOB.
Another technology that is designed for these kinds of fluid, non-relational data models is a Semantic Database, storing data in RDF and queried with SPARQL. One free solution is Sesame.
One way would be to slightly rethink your schema, normalising tag keys away from values:
Now all you need is a unique constraint on
vehicleTags(vid, tid)
.Alternatively, there are ways to create constraints beyond simple foreign keys: depending on your database, can you write a custom constraint or an insert/update trigger to enforce vehicle-tag uniqueness?