What is the difference between a thread and a fiber? I've heard of fibers from ruby and I've read heard they're available in other languages, could somebody explain to me in simple terms what is the difference between a thread and a fiber.
相关问题
- How to let a thread communicate with another activ
- Why it isn't advised to call the release() met
- ThreadPoolTaskScheduler behaviour when pool is ful
- Custom TaskScheduler, SynchronizationContext?
- Too many Garbage collection threads
相关文章
- Difference between Thread#run and Thread#wakeup?
- Java/Spring MVC: provide request context to child
- Threading in C# , value types and reference types
- RMI Threads prevent JVM from exiting after main()
- Async task does not work properly (doInBackground
- Android, Volley Request, the response is blocking
- parallelizing matrix multiplication through thread
- Android- Thread.join() causes Application to hang
First I would recommend reading this explanation of the difference between processes and threads as background material.
Once you've read that it's pretty straight forward. Threads cans be implemented either in the kernel, in user space, or the two can be mixed. Fibers are basically threads implemented in user space.
In section 11.4 "Processes and Threads in Windows Vista" in Modern Operating Systems, Tanenbaum comments:
In the most simple terms, threads are generally considered to be preemptive (although this may not always be true, depending on the operating system) while fibers are considered to be light-weight, cooperative threads. Both are separate execution paths for your application.
With threads: the current execution path may be interrupted or preempted at any time (note: this statement is a generalization and may not always hold true depending on OS/threading package/etc.). This means that for threads, data integrity is a big issue because one thread may be stopped in the middle of updating a chunk of data, leaving the integrity of the data in a bad or incomplete state. This also means that the operating system can take advantage of multiple CPUs and CPU cores by running more than one thread at the same time and leaving it up to the developer to guard data access.
With fibers: the current execution path is only interrupted when the fiber yields execution (same note as above). This means that fibers always start and stop in well-defined places, so data integrity is much less of an issue. Also, because fibers are often managed in the user space, expensive context switches and CPU state changes need not be made, making changing from one fiber to the next extremely efficient. On the other hand, since no two fibers can run at exactly the same time, just using fibers alone will not take advantage of multiple CPUs or multiple CPU cores.
Threads generally rely on the kernel to interrupt the thread so it or another thread can run (which is better known as Pre-emptive multitasking) whereas fibers use co-operative multitasking where it is the fiber itself that give up the its running time so that other fibres can run.
Some useful links explaining it better than I probably did are: