Matrix inversion without Numpy

2019-01-17 16:17发布

I want to invert a matrix without using numpy.linalg.inv.

The reason is that I am using Numba to speed up the code, but numpy.linalg.inv is not supported, so I am wondering if I can invert a matrix with 'classic' Python code.

With numpy.linalg.inv an example code would look like that:

import numpy as np
M = np.array([[1,0,0],[0,1,0],[0,0,1]])
Minv = np.linalg.inv(M)

4条回答
走好不送
2楼-- · 2019-01-17 16:32

As of at least July 16, 2018 Numba has a fast matrix inverse. (You can see how they overload the standard NumPy inverse and other operations here.)

Here are the results of my benchmarking:

import numpy as np
from scipy import linalg as sla
from scipy import linalg as nla
import numba

def gen_ex(d0):
  x = np.random.randn(d0,d0)
  return x.T + x

@numba.jit
def inv_nla_jit(A):
  return np.linalg.inv(A)

@numba.jit
def inv_sla_jit(A):
  return sla.inv(A)

For small matrices it is particularly fast:

ex1 = gen_ex(4)
%timeit inv_nla_jit(ex1) # NumPy + Numba
%timeit inv_sla_jit(ex1) # SciPy + Numba
%timeit nla.inv(ex1)     # NumPy
%timeit sla.inv(ex1)     # SciPy

[Out]

2.54 µs ± 467 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
67.3 µs ± 9.18 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
63.5 µs ± 7.65 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
56.6 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Notice that the speedup only works for NumPy inverse, not SciPy (as expected).

Slightly larger matrix:

ex2 = gen_ex(40)
%timeit inv_nla_jit(ex2) # NumPy + Numba
%timeit inv_sla_jit(ex2) # SciPy + Numba
%timeit nla.inv(ex2)     # NumPy
%timeit sla.inv(ex2)     # SciPy

[Out]

131 µs ± 12.9 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
278 µs ± 26.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
231 µs ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
189 µs ± 11.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

So there's still a speedup here but SciPy is catching up.

查看更多
一夜七次
3楼-- · 2019-01-17 16:35

I used the formula from http://cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html to write the function that does the inversion of a 4x4 matrix:

import numpy as np

def myInverse(A):
    detA = np.linalg.det(A)

    b00 = A[1,1]*A[2,2]*A[3,3] + A[1,2]*A[2,3]*A[3,1] + A[1,3]*A[2,1]*A[3,2] - A[1,1]*A[2,3]*A[3,2] - A[1,2]*A[2,1]*A[3,3] - A[1,3]*A[2,2]*A[3,1]
    b01 = A[0,1]*A[2,3]*A[3,2] + A[0,2]*A[2,1]*A[3,3] + A[0,3]*A[2,2]*A[3,1] - A[0,1]*A[2,2]*A[3,3] - A[0,2]*A[2,3]*A[3,1] - A[0,3]*A[2,1]*A[3,2]
    b02 = A[0,1]*A[1,2]*A[3,3] + A[0,2]*A[1,3]*A[3,1] + A[0,3]*A[1,1]*A[3,2] - A[0,1]*A[1,3]*A[3,2] - A[0,2]*A[1,1]*A[3,3] - A[0,3]*A[1,2]*A[3,1]
    b03 = A[0,1]*A[1,3]*A[2,2] + A[0,2]*A[1,1]*A[2,3] + A[0,3]*A[1,2]*A[2,1] - A[0,1]*A[1,2]*A[2,3] - A[0,2]*A[1,3]*A[2,1] - A[0,3]*A[1,1]*A[2,2]

    b10 = A[1,0]*A[2,3]*A[3,2] + A[1,2]*A[2,0]*A[3,3] + A[1,3]*A[2,2]*A[3,0] - A[1,0]*A[2,2]*A[3,3] - A[1,2]*A[2,3]*A[3,0] - A[1,3]*A[2,0]*A[3,2]
    b11 = A[0,0]*A[2,2]*A[3,3] + A[0,2]*A[2,3]*A[3,0] + A[0,3]*A[2,0]*A[3,2] - A[0,0]*A[2,3]*A[3,2] - A[0,2]*A[2,0]*A[3,3] - A[0,3]*A[2,2]*A[3,0]
    b12 = A[0,0]*A[1,3]*A[3,2] + A[0,2]*A[1,0]*A[3,3] + A[0,3]*A[1,2]*A[3,0] - A[0,0]*A[1,2]*A[3,3] - A[0,2]*A[1,3]*A[3,0] - A[0,3]*A[1,0]*A[3,2]
    b13 = A[0,0]*A[1,2]*A[2,3] + A[0,2]*A[1,3]*A[2,0] + A[0,3]*A[1,0]*A[2,2] - A[0,0]*A[1,3]*A[2,2] - A[0,2]*A[1,0]*A[2,3] - A[0,3]*A[1,2]*A[2,0]

    b20 = A[1,0]*A[2,1]*A[3,3] + A[1,1]*A[2,3]*A[3,0] + A[1,3]*A[2,0]*A[3,1] - A[1,0]*A[2,3]*A[3,1] - A[1,1]*A[2,0]*A[3,3] - A[1,3]*A[2,1]*A[3,0]
    b21 = A[0,0]*A[2,3]*A[3,1] + A[0,1]*A[2,0]*A[3,3] + A[0,3]*A[2,1]*A[3,0] - A[0,0]*A[2,1]*A[3,3] - A[0,1]*A[2,3]*A[3,0] - A[0,3]*A[2,0]*A[3,1]
    b22 = A[0,0]*A[1,1]*A[3,3] + A[0,1]*A[1,3]*A[3,0] + A[0,3]*A[1,0]*A[3,1] - A[0,0]*A[1,3]*A[3,1] - A[0,1]*A[1,0]*A[3,3] - A[0,3]*A[1,1]*A[3,0]
    b23 = A[0,0]*A[1,3]*A[2,1] + A[0,1]*A[1,0]*A[2,3] + A[0,3]*A[1,1]*A[2,0] - A[0,0]*A[1,1]*A[2,3] - A[0,1]*A[1,3]*A[2,0] - A[0,3]*A[1,0]*A[2,1]

    b30 = A[1,0]*A[2,2]*A[3,1] + A[1,1]*A[2,0]*A[3,2] + A[1,2]*A[2,1]*A[3,0] - A[1,0]*A[2,1]*A[3,2] - A[1,1]*A[2,2]*A[3,0] - A[1,2]*A[2,0]*A[3,1]
    b31 = A[0,0]*A[2,1]*A[3,2] + A[0,1]*A[2,2]*A[3,0] + A[0,2]*A[2,0]*A[3,1] - A[0,0]*A[2,2]*A[3,1] - A[0,1]*A[2,0]*A[3,2] - A[0,2]*A[2,1]*A[3,0]
    b32 = A[0,0]*A[1,2]*A[3,1] + A[0,1]*A[1,0]*A[3,2] + A[0,2]*A[1,1]*A[3,0] - A[0,0]*A[1,1]*A[3,2] - A[0,1]*A[1,2]*A[3,0] - A[0,2]*A[1,0]*A[3,1]
    b33 = A[0,0]*A[1,1]*A[2,2] + A[0,1]*A[1,2]*A[2,0] + A[0,2]*A[1,0]*A[2,1] - A[0,0]*A[1,2]*A[2,1] - A[0,1]*A[1,0]*A[2,2] - A[0,2]*A[1,1]*A[2,0]

    Ainv = np.array([[b00, b01, b02, b03], [b10, b11, b12, b13], [b20, b21, b22, b23], [b30, b31, b32, b33]]) / detA

return Ainv
查看更多
可以哭但决不认输i
4楼-- · 2019-01-17 16:37

For a 4 x 4 matrix it's probably just about OK to use the mathematical formula, which you can find using Googling "formula for 4 by 4 matrix inverse". For example here (I can't vouch for its accuracy):

http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/teche23.html

In general inverting a general matrix is not for the faint-hearted. You have to be aware of all the mathematically difficult cases and know why they won't apply to your usage, and catch them when you are supplied with mathematically pathological inputs (that, or return results of low accuracy or numerical garbage in the knowledge that it won't matter in your usage case provided you don't actually end up dividing by zero or overflowing MAXFLOAT ... which you might catch with an exception handler and present as "Error: matrix is singular or very close thereto").

It's generally better as a programmer to use library code written by numerical mathematics experts, unless you are willing to spend time understanding the physical and mathematical nature of the particular problem that you are addressing and become your own mathematics expert in your own specialist field.

查看更多
手持菜刀,她持情操
5楼-- · 2019-01-17 16:51

Here is a more elegant and scalable solution, imo. It'll work for any nxn matrix and you may find use for the other methods. Note that getMatrixInverse(m) takes in an array of arrays as input. Please feel free to ask any questions.

def transposeMatrix(m):
    return map(list,zip(*m))

def getMatrixMinor(m,i,j):
    return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]

def getMatrixDeternminant(m):
    #base case for 2x2 matrix
    if len(m) == 2:
        return m[0][0]*m[1][1]-m[0][1]*m[1][0]

    determinant = 0
    for c in range(len(m)):
        determinant += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))
    return determinant

def getMatrixInverse(m):
    determinant = getMatrixDeternminant(m)
    #special case for 2x2 matrix:
    if len(m) == 2:
        return [[m[1][1]/determinant, -1*m[0][1]/determinant],
                [-1*m[1][0]/determinant, m[0][0]/determinant]]

    #find matrix of cofactors
    cofactors = []
    for r in range(len(m)):
        cofactorRow = []
        for c in range(len(m)):
            minor = getMatrixMinor(m,r,c)
            cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
        cofactors.append(cofactorRow)
    cofactors = transposeMatrix(cofactors)
    for r in range(len(cofactors)):
        for c in range(len(cofactors)):
            cofactors[r][c] = cofactors[r][c]/determinant
    return cofactors
查看更多
登录 后发表回答