I get this question asked many times. What is a good way to answer
相关问题
- Delete Messages from a Topic in Apache Kafka
- Jackson Deserialization not calling deserialize on
- How to maintain order of key-value in DataFrame sa
- StackExchange API - Deserialize Date in JSON Respo
- Difference between Types.INTEGER and Types.NULL in
The short answer:
An even shorter answer:
The answer is that it depends on what kind of memory leak you are talking about.
Classic C / C++ memory leaks occur when an application neglects to
free
ordispose
an object when they are done with it, and it leaks. Cyclic references are a sub-case of this where the application has difficulty knowing when tofree
/dispose
, and neglects to do it as a result. Related problems are where the application uses an object after it has been freed, or attempts to free it twice. (You could call the latter problems memory leaks, or just bugs. Either way ... )Java and other (fully1) managed languages mostly don't suffer from these problems because the GC takes care of freeing objects that are no longer reachable. (Certainly, dangling pointer and double-free problems don't exist, and cycles are not problematic as they are for C / C++ "smart pointers" and other reference count schemes.)
But in some cases GC in Java will miss objects that (from the perspective of the programmer) should be garbage collected. This happens when the GC cannot figure out that an object cannot be reached:
(Note that the causes of memory leaks in Java can be simple, or quite subtle; see @jonathan.cone's answer for some subtle ones. The last one potentially involves external resources that you shouldn't rely on the GC to deal with anyway.)
Either way, you can have a situation where unwanted objects cannot be garbage collected, and hang around tying up memory ... a memory leak.
Then there is the problem that a Java application or library can allocate off-heap objects via native code that need to be managed manually. If the application / library is buggy or is used incorrectly, you can get a native memory leak. (For example: Android Bitmap memory leak ... noting that this problem is fixed in later versions of Android.)
1 - I'm alluding to a couple of things. Some managed languages allow you to write unmanaged code where you can create classic storage leaks. Some other managed languages (or more precisely language implementations) use reference counting rather than proper garbage collecting. A reference count-based storage manager needs something (i.e. the application) to break cycles ... or else storage leaks will ensue.
Well, considering that java uses a garbage collector to collect unused objects, you can't have a dangling pointer. However, you could keep an object in scope for longer than it needs to be, which could be considered a memory leak. More on this here: http://web.archive.org/web/20120722095536/http://www.ibm.com:80/developerworks/rational/library/05/0816_GuptaPalanki/
Are you taking a test on this or something? Because that's at least an A+ right there.
Yes. Memory leaks can still occur even when you have a GC. For example, you might hold on to resources such as database result sets which you must close manually.
Yes. A memory leak is unused memory not released to the memory manager by the app.
I've seen many times Java code wich stores items on a data structure but the items are never removed from there, filling the memory until an OutOfMemoryError:
While this example is too obvious, Java memory errors tend to be more subtle. For example, using Dependency Injection storing a huge object on a component with
SESSION
scope, without releasing it when the object is no longer used.On a 64 bits VM this tends to get worse since the swap memory space starts to get filled until the system crawls on too many IO operations.
Yes, in the sense that your Java application can accumulate memory over time that the garbage collector is unable to free.
By maintaining references to uneeded/unwanted objects they will never fall out of scope and their memory will not be claimed back.