Equidistant points across Bezier curves

2019-01-17 08:35发布

Currently, I'm attempting to make multiple beziers have equidistant points. I'm currently using cubic interpolation to find the points, but because the way beziers work some areas are more dense than others and proving gross for texture mapping because of the variable distance. Is there a way to find points on a bezier by distance rather than by percentage? Furthermore, is it possible to extend this to multiple connected curves?

3条回答
放我归山
2楼-- · 2019-01-17 09:11

This is called "arc length" parameterization. I wrote a paper about this several years ago:

http://www.saccade.com/writing/graphics/RE-PARAM.PDF

The idea is to pre-compute a "parameterization" curve, and evaluate the curve through that.

查看更多
Juvenile、少年°
3楼-- · 2019-01-17 09:25

distance between P_0 and P_3 (in cubic form), yes, but I think you knew that, is straight forward.

Distance on a curve is just arc length:

fig 1 http://www.codecogs.com/eq.latex?%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20%7B%20|P'(t)|%20dt

where:

fig 2 http://www.codecogs.com/eq.latex?P%27(t)%20=%20[%7Bx%27,y%27,z%27%7D]%20=%20[%7B%5Cfrac%7Bdx(t)%7D%7Bdt%7D,%5Cfrac%7Bdy(t)%7D%7Bdt%7D,%5Cfrac%7Bdz(t)%7D%7Bdt%7D%7D]

(see the rest)

Probably, you'd have t_0 = 0, t_1 = 1.0, and dz(t) = 0 (2d plane).

查看更多
我欲成王,谁敢阻挡
4楼-- · 2019-01-17 09:26

I know this is an old question but I recently ran into this problem and created a UIBezierPath extention to solve for an X coordinate given a Y coordinate and vise versa. Written in swift.

https://github.com/rkotzy/RKBezierMath

extension UIBezierPath {

func solveBezerAtY(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, y: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.y - y
    let C1 = point1.y - y
    let C2 = point2.y - y
    let C3 = end.y - y

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result
}

func solveBezerAtX(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, x: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.x - x
    let C1 = point1.x - x
    let C2 = point2.x - x
    let C3 = end.x - x

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result

}

func solveCubic(a: CGFloat?, var b: CGFloat, var c: CGFloat, var d: CGFloat) -> [CGFloat] {

    if (a == nil) {
        return solveQuadratic(b, b: c, c: d)
    }

    b /= a!
    c /= a!
    d /= a!

    let p = (3 * c - b * b) / 3
    let q = (2 * b * b * b - 9 * b * c + 27 * d) / 27

    if (p == 0) {
        return [pow(-q, 1 / 3)]

    } else if (q == 0) {
        return [sqrt(-p), -sqrt(-p)]

    } else {

        let discriminant = pow(q / 2, 2) + pow(p / 3, 3)

        if (discriminant == 0) {
            return [pow(q / 2, 1 / 3) - b / 3]

        } else if (discriminant > 0) {
            let x = crt(-(q / 2) + sqrt(discriminant))
            let z = crt((q / 2) + sqrt(discriminant))
            return [x - z - b / 3]
        } else {

            let r = sqrt(pow(-(p/3), 3))
            let phi = acos(-(q / (2 * sqrt(pow(-(p / 3), 3)))))

            let s = 2 * pow(r, 1/3)

            return [
                s * cos(phi / 3) - b / 3,
                s * cos((phi + CGFloat(2) * CGFloat(M_PI)) / 3) - b / 3,
                s * cos((phi + CGFloat(4) * CGFloat(M_PI)) / 3) - b / 3
            ]

        }

    }
}

func solveQuadratic(a: CGFloat, b: CGFloat, c: CGFloat) -> [CGFloat] {

    let discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
        return []

    } else {
        return [
            (-b + sqrt(discriminant)) / (2 * a),
            (-b - sqrt(discriminant)) / (2 * a)
        ]
    }

}

private func crt(v: CGFloat) -> CGFloat {
    if (v<0) {
        return -pow(-v, 1/3)
    }
    return pow(v, 1/3)
}

private func bezierOutputAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGPoint {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)
    let D = C0

    return CGPointMake(((A.x*t+B.x)*t+C.x)*t+D.x, ((A.y*t+B.y)*t+C.y)*t+D.y)
}

// TODO: - future implementation
private func tangentAngleAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGFloat {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)

    return atan2(3.0*A.y*t*t + 2.0*B.y*t + C.y, 3.0*A.x*t*t + 2.0*B.x*t + C.x)
}

}
查看更多
登录 后发表回答