I am preparing some training materials in C and I want my examples to fit the typical stack model.
What direction does a C stack grow in Linux, Windows, Mac OSX (PPC and x86), Solaris, and most recent Unixes?
I am preparing some training materials in C and I want my examples to fit the typical stack model.
What direction does a C stack grow in Linux, Windows, Mac OSX (PPC and x86), Solaris, and most recent Unixes?
Stack growth doesn't usually depend on the operating system itself, but on the processor it's running on. Solaris, for example, runs on x86 and SPARC. Mac OSX (as you mentioned) runs on PPC and x86. Linux runs on everything from my big honkin' System z at work to a puny little wristwatch.
If the CPU provides any kind of choice, the ABI / calling convention used by the OS specifies which choice you need to make if you want your code to call everyone else's code.
The processors and their direction are:
Showing my age on those last few, the 1802 was the chip used to control the early shuttles (sensing if the doors were open, I suspect, based on the processing power it had :-) and my second computer, the COMX-35 (following my ZX80).
PDP11 details gleaned from here, 8051 details from here.
The SPARC architecture uses a sliding window register model. The architecturally visible details also include a circular buffer of register-windows that are valid and cached internally, with traps when that over/underflows. See here for details. As the SPARCv8 manual explains, SAVE and RESTORE instructions are like ADD instructions plus register-window rotation. Using a positive constant instead of the usual negative would give an upward-growing stack.
The afore-mentioned SCRT technique is another - the 1802 used some or it's sixteen 16-bit registers for SCRT (standard call and return technique). One was the program counter, you could use any register as the PC with the
SEP Rn
instruction. One was the stack pointer and two were set always to point to the SCRT code address, one for call, one for return. No register was treated in a special way. Keep in mind these details are from memory, they may not be totally correct.For example, if R3 was the PC, R4 was the SCRT call address, R5 was the SCRT return address and R2 was the "stack" (quotes as it's implemented in software),
SEP R4
would set R4 to be the PC and start running the SCRT call code.It would then store R3 on the R2 "stack" (I think R6 was used for temp storage), adjusting it up or down, grab the two bytes following R3, load them into R3, then do
SEP R3
and be running at the new address.To return, it would
SEP R5
which would pull the old address off the R2 stack, add two to it (to skip the address bytes of the call), load it into R3 andSEP R3
to start running the previous code.Very hard to wrap your head around initially after all the 6502/6809/z80 stack-based code but still elegant in a bang-your-head-against-the-wall sort of way. Also one of the big selling features of the chip was a full suite of 16 16-bit registers, despite the fact you immediately lost 7 of those (5 for SCRT, two for DMA and interrupts from memory). Ahh, the triumph of marketing over reality :-)
System z is actually quite similar, using its R14 and R15 registers for call/return.
It grows down because the memory allocated to the program has the "permanent data" i.e. code for the program itself at the bottom, then the heap in the middle. You need another fixed point from which to reference the stack, so that leaves you the top. This means the stack grows down, until it is potentially adjacent to objects on the heap.
The advantage of growing down is in older systems the stack was typically at the top of memory. Programs typically filled memory starting from the bottom thus this sort of memory management minimized the need to measure and place the bottom of the stack somewhere sensible.
In MIPS there's no
push
/pop
instruction. All pushes/pops are explicitly done by load/store relatively to the stack pointer and then manually adjust the$sp
pointer. However as all registers (except$0
) are general purpose, in theory any register can be a stack pointer, and the stack can grow in any direction the programmer wants. MIPS ABIs typically grow downwards.In Intel 8051 the stack grows up, probably because the memory space is so tiny (128 bytes in original version) that there's no heap and you don't need to put the stack on top so that it'll be separated from the heap growing from bottom.
On most systems, stack grows down, and my article at https://gist.github.com/cpq/8598782 explains WHY it grows down. The reason is that is the optimal layout of two growing memory regions (heap and stack).
In C++ (adaptable to C) stack.cc: