Perspective correction in OpenCV using python

2019-01-16 17:33发布

I am trying to do a perspective correction of a tilted rectangle ( a credit card), which is tilted in all the 4 directions. I could find its four corners and the respective angles of its tilt but I cannot find the exact location of the coordinates, where it has to be projected. I am using cv2.getPerspectiveTransform to do the transformation.

I have the aspect ratio of the actual card (the non tilted one), I want such coordinates such that the original aspect ratio is preserved. I have tried using a bounding rectangle but this increases the size of the card.

Any help would be appreciated.test image

Bounding Rectangle

2条回答
迷人小祖宗
2楼-- · 2019-01-16 17:45

enter image description here I have a better solution which is much easy: - The red rectangle on original image and the corners points of the rectangle are source points
- We use cv2.getPerspectiveTransform(src, dst) that takes source points and destination points as arguments and returns the transformation matrix which transforms any image to destination image as show in the diagram - We use this transformation matrix in cv2.warpPerspective()
- As you can see results are better. You get a very nice bird view of the image

import cv2
import matplotlib.pyplot as plt
import numpy as np


def unwarp(img, src, dst, testing):
    h, w = img.shape[:2]
    # use cv2.getPerspectiveTransform() to get M, the transform matrix, and Minv, the inverse
    M = cv2.getPerspectiveTransform(src, dst)
    # use cv2.warpPerspective() to warp your image to a top-down view
    warped = cv2.warpPerspective(img, M, (w, h), flags=cv2.INTER_LINEAR)

    if testing:
        f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
        f.subplots_adjust(hspace=.2, wspace=.05)
        ax1.imshow(img)
        x = [src[0][0], src[2][0], src[3][0], src[1][0], src[0][0]]
        y = [src[0][1], src[2][1], src[3][1], src[1][1], src[0][1]]
        ax1.plot(x, y, color='red', alpha=0.4, linewidth=3, solid_capstyle='round', zorder=2)
        ax1.set_ylim([h, 0])
        ax1.set_xlim([0, w])
        ax1.set_title('Original Image', fontsize=30)
        ax2.imshow(cv2.flip(warped, 1))
        ax2.set_title('Unwarped Image', fontsize=30)
        plt.show()
    else:
        return warped, M


im = cv2.imread("so.JPG")

w, h = im.shape[0], im.shape[1]
# We will first manually select the source points 
# we will select the destination point which will map the source points in
# original image to destination points in unwarped image
src = np.float32([(20,     1),
                  (540,  130),
                  (20,    520),
                  (570,  450)])

dst = np.float32([(600, 0),
                  (0, 0),
                  (600, 531),
                  (0, 531)])

unwarp(im, src, dst, True)

cv2.imshow("so", im)
cv2.waitKey(0)[![enter image description here][1]][1]
cv2.destroyAllWindows()
查看更多
兄弟一词,经得起流年.
3楼-- · 2019-01-16 18:05

Here is the way you need to follow...

For easiness I have resized your image to smaller size,

enter image description here

  • Compute quadrangle vertices for source image, here I find out manually, you can choose edge detection, hough line etc..
  Q1=manual calculation;
  Q2=manual calculation;
  Q3=manual calculation;
  Q4=manual calculation;
  • Compute quadrangle vertices in the destination image by keeping aspect ratio, here you can to take width of card from above quadrangle vertices of source, and compute height by multiplying with aspect ratio.
   // compute the size of the card by keeping aspect ratio.
    double ratio=1.6;
    double cardH=sqrt((Q3.x-Q2.x)*(Q3.x-Q2.x)+(Q3.y-Q2.y)*(Q3.y-Q2.y)); //Or you can give your own height
    double cardW=ratio*cardH;
    Rect R(Q1.x,Q1.y,cardW,cardH);
  • Now you got quadrangle vertices for source and destination, then apply warpPerspective.

enter image description here

You can refer below C++ code,

   //Compute quad point for edge
    Point Q1=Point2f(90,11);
    Point Q2=Point2f(596,135);
    Point Q3=Point2f(632,452);
    Point Q4=Point2f(90,513);

    // compute the size of the card by keeping aspect ratio.
    double ratio=1.6;
    double cardH=sqrt((Q3.x-Q2.x)*(Q3.x-Q2.x)+(Q3.y-Q2.y)*(Q3.y-Q2.y));//Or you can give your own height
    double cardW=ratio*cardH;
    Rect R(Q1.x,Q1.y,cardW,cardH);

    Point R1=Point2f(R.x,R.y);
    Point R2=Point2f(R.x+R.width,R.y);
    Point R3=Point2f(Point2f(R.x+R.width,R.y+R.height));
    Point R4=Point2f(Point2f(R.x,R.y+R.height));

    std::vector<Point2f> quad_pts;
    std::vector<Point2f> squre_pts;

    quad_pts.push_back(Q1);
    quad_pts.push_back(Q2);
    quad_pts.push_back(Q3);
    quad_pts.push_back(Q4);

    squre_pts.push_back(R1);
    squre_pts.push_back(R2);
    squre_pts.push_back(R3);
    squre_pts.push_back(R4);


    Mat transmtx = getPerspectiveTransform(quad_pts,squre_pts);
    int offsetSize=150;
    Mat transformed = Mat::zeros(R.height+offsetSize, R.width+offsetSize, CV_8UC3);
    warpPerspective(src, transformed, transmtx, transformed.size());

    //rectangle(src, R, Scalar(0,255,0),1,8,0);

    line(src,Q1,Q2, Scalar(0,0,255),1,CV_AA,0);
    line(src,Q2,Q3, Scalar(0,0,255),1,CV_AA,0);
    line(src,Q3,Q4, Scalar(0,0,255),1,CV_AA,0);
    line(src,Q4,Q1, Scalar(0,0,255),1,CV_AA,0);

    imshow("quadrilateral", transformed);
    imshow("src",src);
    waitKey();
查看更多
登录 后发表回答