Synchronization vs Lock

2019-01-01 12:06发布

java.util.concurrent API provides a class called as Lock, which would basically serialize the control in order to access the critical resource. It gives method such as park() and unpark().

We can do similar things if we can use synchronized keyword and using wait() and notify() notifyAll() methods.

I am wondering which one of these is better in practice and why?

10条回答
人间绝色
2楼-- · 2019-01-01 12:23

You can achieve everything the utilities in java.util.concurrent do with the low-level primitives like synchronized, volatile, or wait / notify

However, concurrency is tricky, and most people get at least some parts of it wrong, making their code either incorrect or inefficient (or both).

The concurrent API provides a higher-level approach, which is easier (and as such safer) to use. In a nutshell, you should not need to use synchronized, volatile, wait, notify directly anymore.

The Lock class itself is on the lower-level side of this toolbox, you may not even need to use that directly either (you can use Queues and Semaphore and stuff, etc, most of the time).

查看更多
流年柔荑漫光年
3楼-- · 2019-01-01 12:24

There are 4 main factors into why you would want to use synchronized or java.util.concurrent.Lock.

Note: Synchronized locking is what I mean when I say intrinsic locking.

  1. When Java 5 came out with ReentrantLocks, they proved to have quite a noticeble throughput difference then intrinsic locking. If youre looking for faster locking mechanism and are running 1.5 consider j.u.c.ReentrantLock. Java 6's intrinsic locking is now comparable.

  2. j.u.c.Lock has different mechanisms for locking. Lock interruptable - attempt to lock until the locking thread is interrupted; timed lock - attempt to lock for a certain amount of time and give up if you do not succeed; tryLock - attempt to lock, if some other thread is holding the lock give up. This all is included aside from the simple lock. Intrinsic locking only offers simple locking

  3. Style. If both 1 and 2 do not fall into categories of what you are concerned with most people, including myself, would find the intrinsic locking semenatics easier to read and less verbose then j.u.c.Lock locking.
  4. Multiple Conditions. An object you lock on can only be notified and waited for a single case. Lock's newCondition method allows for a single Lock to have mutliple reasons to await or signal. I have yet to actually need this functionality in practice, but is a nice feature for those who need it.
查看更多
只靠听说
4楼-- · 2019-01-01 12:28

I would like to add some more things on top of Bert F answer.

Locks support various methods for finer grained lock control, which are more expressive than implicit monitors (synchronized locks)

A Lock provides exclusive access to a shared resource: only one thread at a time can acquire the lock and all access to the shared resource requires that the lock be acquired first. However, some locks may allow concurrent access to a shared resource, such as the read lock of a ReadWriteLock.

Advantages of Lock over Synchronization from documentation page

  1. The use of synchronized methods or statements provides access to the implicit monitor lock associated with every object, but forces all lock acquisition and release to occur in a block-structured way

  2. Lock implementations provide additional functionality over the use of synchronized methods and statements by providing a non-blocking attempt to acquire a lock (tryLock()), an attempt to acquire the lock that can be interrupted (lockInterruptibly(), and an attempt to acquire the lock that can timeout (tryLock(long, TimeUnit)).

  3. A Lock class can also provide behavior and semantics that is quite different from that of the implicit monitor lock, such as guaranteed ordering, non-reentrant usage, or deadlock detection

ReentrantLock: In simple terms as per my understanding, ReentrantLock allows an object to re-enter from one critical section to other critical section . Since you already have lock to enter one critical section, you can other critical section on same object by using current lock.

ReentrantLock key features as per this article

  1. Ability to lock interruptibly.
  2. Ability to timeout while waiting for lock.
  3. Power to create fair lock.
  4. API to get list of waiting thread for lock.
  5. Flexibility to try for lock without blocking.

You can use ReentrantReadWriteLock.ReadLock, ReentrantReadWriteLock.WriteLock to further acquire control on granular locking on read and write operations.

Apart from these three ReentrantLocks, java 8 provides one more Lock

StampedLock:

Java 8 ships with a new kind of lock called StampedLock which also support read and write locks just like in the example above. In contrast to ReadWriteLock the locking methods of a StampedLock return a stamp represented by a long value.

You can use these stamps to either release a lock or to check if the lock is still valid. Additionally stamped locks support another lock mode called optimistic locking.

Have a look at this article on usage of different type of ReentrantLock and StampedLock locks.

查看更多
萌妹纸的霸气范
5楼-- · 2019-01-01 12:33

Lock and synchronize block both serves the same purpose but it depends on the usage. Consider the below part

void randomFunction(){
.
.
.
synchronize(this){
//do some functionality
}

.
.
.
synchronize(this)
{
// do some functionality
}


} // end of randomFunction

In the above case , if a thread enters the synchronize block, the other block is also locked. If there are multiple such synchronize block on the same object, all the blocks are locked. In such situations , java.util.concurrent.Lock can be used to prevent unwanted locking of blocks

查看更多
临风纵饮
6楼-- · 2019-01-01 12:35

Brian Goetz's "Java Concurrency In Practice" book, section 13.3: "...Like the default ReentrantLock, intrinsic locking offers no deterministic fairness guarantees, but the statistical fairness guarantees of most locking implementations are good enough for almost all situations..."

查看更多
余生请多指教
7楼-- · 2019-01-01 12:40

The main difference is fairness, in other words are requests handled FIFO or can there be barging? Method level synchronization ensures fair or FIFO allocation of the lock. Using

synchronized(foo) {
}

or

lock.acquire(); .....lock.release();

does not assure fairness.

If you have lots of contention for the lock you can easily encounter barging where newer requests get the lock and older requests get stuck. I've seen cases where 200 threads arrive in short order for a lock and the 2nd one to arrive got processed last. This is ok for some applications but for others it's deadly.

See Brian Goetz's "Java Concurrency In Practice" book, section 13.3 for a full discussion of this topic.

查看更多
登录 后发表回答