I want to proxy WebSocket connections to multiple node.js servers using Amazon Elastic Load Balancer. Since Amazon ELB does not provide actual WebSocket support, I would need to use its vanilla TCP messaging. However, I'm trying to understand how this would work without some sort of sticky session functionality.
I understand that WebSockets work by first sending an HTTP Upgrade request from the client, which is handled by the server by sending a response which correctly handles key authentication. After the server sends that response and it is approved by the client, there is a bidirectional connection between that client and server.
However let's say the client, after approving the server response, sends data to the server. If it sends the data to the load balancer, and the load balancer then relays that data to a different server that did not handle the original WebSocket Upgrade request, then how will this new server be aware of the WebSocket connection? Or will the client automatically bypass the load balancer and send data directly to the server that handled the initial upgrade?
I think what we need to understand in order to answer this question is how exactly the underlying TCP connection evolves during the whole WebSocket creation process. You will realize that the sticky part of a WebSocket connection is the underlying TCP connection itself. I am not sure what you mean with "session" in the context of WebSockets.
At a high level, initiating a "WebSocket connection" requires the client to send an HTTP GET request to an HTTP server whereas the request includes the
Upgrade
header field. Now, for this request to happen the client needs to have established a TCP connection to the HTTP server (that might be obvious, but I think here it is important to point this out explicitly). The subsequent HTTP server response is then sent through the same TCP connection.Note that now, after the server response has been sent, the TCP connection is still open/alive if not actively closed by either the client or the server.
Now, according to RFC 6455, the WebSocket standard, at the end of section 4.1:
I read from here that the same TCP connection that was initiated by the client before sending the initial HTTP GET (Upgrade) request will just be left open and will from now on serve as the transport layer for the full-duplex WebSocket connection. And this makes sense!
With respect to your question this means that a load balancer will only play a role before the initial HTTP GET (Upgrade) request is made, i.e. before the one and only TCP connection involved in said WebSocket connection creation is established between the two communication end points. Thereafter, the TCP connection stays established and cannot become "redirected" by a network device in between.
We can conclude that -- in your session terminology -- the TCP connection defines the session. As long as a WebSocket connection is alive (i.e. is not terminated), it by definition provides and lives in its own session. Nothing can change this session. Speaking in this picture, two independent WebSocket connections, however, cannot share the same session.
If you referred to something else with "session", then it probably is a session that is introduced by the application layer and we cannot comment on that one.
Edit with respect to your comments:
No, that is not true, at least in general. It definitely can take influence upon TCP connection establishment, in the sense that it can decide what to do with the client connection attempt. The specifics depend on the exact type of load balancer (* , see below). Important: After the connection is established between two endpoints -- whereas I don't consider the load balancer to be an endpoint, I refer to WebSocket client and WebSocket server -- the two endpoints will not change anymore for the lifetime of the WebSocket connection. The load balancer might* still be in the network path, but can be assumed to not take influence anymore.
Yes!
***There are different types of load balancing. Depending on the type, the role of the load balancer is different after connection establishment between the two end points. Examples:
WebSocket uses a persistent TCP connection, and hence requires all IP packets for that TCP connection to be forwarded to the same backend server (for the lifetime of the TCP connection).
It needs to be sticky. This is different from L7 HTTP LBs which are able to dispatch on a per HTTP-request basis.
A LB can work sticky by different approaches, i.e.