Pandas group by on one column with max date on ano

2020-08-13 05:21发布

i have a dataframe with following data :

invoice_no  dealer  billing_change_previous_month        date
       110       1                              0  2016-12-31
       100       1                         -41981  2017-01-30
      5505       2                              0  2017-01-30
      5635       2                          58730  2016-12-31

i want to have only one dealer with the maximum date . The desired output should be like this :

invoice_no  dealer  billing_change_previous_month        date
       100       1                         -41981  2017-01-30
      5505       2                              0  2017-01-30

each dealer should be distinct with maximum date, thanks in advance for your help.

3条回答
我命由我不由天
2楼-- · 2020-08-13 05:44

Here https://stackoverflow.com/a/41531127/9913319 is more correct solution:

df.sort_values('date').groupby('dealer').tail(1)
查看更多
Fickle 薄情
3楼-- · 2020-08-13 05:45

You can use boolean indexing using groupby and transform

df_new = df[df.groupby('dealer').date.transform('max') == df['date']]

    invoice_no  dealer  billing_change_previous_month   date
1   100         1       -41981                          2017-01-30
2   5505        2       0                               2017-01-30

If there are more than two dealers,

df = pd.DataFrame({'invoice_no':[110,100,5505,5635,10000,10001], 'dealer':[1,1,2,2,3,3],'billing_change_previous_month':[0,-41981,0,58730,9000,100], 'date':['2016-12-31','2017-01-30','2017-01-30','2016-12-31', '2019-12-31', '2020-01-31']})

df['date'] = pd.to_datetime(df['date'])
df[df.groupby('dealer').date.transform('max') == df['date']]


    invoice_no  dealer  billing_change_previous_month   date
1   100         1       -41981                          2017-01-30
2   5505        2       0                               2017-01-30
5   10001       3       100                             2020-01-31
查看更多
We Are One
4楼-- · 2020-08-13 05:53

Tack 1

Sort by dealer and by date before using drop_duplicates. This is blind to the issue that surfaces in Tack 2, below since there is no possibility for multiple records for each dealer in this method. This may or may not be an issue for you depending on your data and your use case.

df.sort_values(['dealer', 'date'], inplace=True)
df.drop_duplicates(['dealer', 'date'], inplace=True)

Tack 2

This is a worse way to do it with a groupby and a merge. Use groupby to find the max date for each dealer. We use the how='inner' parameter to only include those dealer and date combinations that appear in the groupby object that contains the maximum date for each dealer.

However, please note that this will return multiple records per dealer if the max date is duplicated in the original table. You might need to use drop_duplicates depending on your data and your use case.

df.merge(df.groupby('dealer')['date'].max().reset_index(), 
                             on=['dealer', 'date'], how='inner')

   invoice_no  dealer  billing_change_previous_month        date
0         100       1                         -41981  2017-01-30
1        5505       2                              0  2017-01-30
查看更多
登录 后发表回答