I am trying to build a rolling regression function based on the example here, but in addition to returning the predicted values, I would like to return the some rolling model diagnostics (i.e. coefficients, t-values, and mabye R^2). I would like the results to be returned in discrete objects based on the type of results. The example provided in the link above sucessfully creates thr rolling predictions, but I need some assistance packaging and writing out the rolling model diagnostics:
In the end, I would like the function to return three (3) objects:
- Predictions
- Coefficients
- T values
- R^2
Below is the code:
require(zoo)
require(dynlm)
## Create Some Dummy Data
set.seed(12345)
x <- rnorm(mean=3,sd=2,100)
y <- rep(NA,100)
y[1] <- x[1]
for(i in 2:100) y[i]=1+x[i-1]+0.5*y[i-1]+rnorm(1,0,0.5)
int <- 1:100
dummydata <- data.frame(int=int,x=x,y=y)
zoodata <- as.zoo(dummydata)
rolling.regression <- function(series) {
mod <- dynlm(formula = y ~ L(y) + L(x), data = as.zoo(series)) # get model
nextOb <- max(series[,'int'])+1 # To get the first row that follows the window
if (nextOb<=nrow(zoodata)) { # You won't predict the last one
# 1) Make Predictions
predicted <- predict(mod,newdata=data.frame(x=zoodata[nextOb,'x'],y=zoodata[nextOb,'y']))
attributes(predicted) <- NULL
c(predicted=predicted,square.res <-(predicted-zoodata[nextOb,'y'])^2)
# 2) Extract coefficients
#coefficients <- coef(mod)
# 3) Extract rolling coefficient t values
#tvalues <- ????(mod)
# 4) Extract rolling R^2
#rsq <-
}
}
rolling.window <- 20
results.z <- rollapply(zoodata, width=rolling.window, FUN=rolling.regression, by.column=F, align='right')
So after figuring out how to extract t values from model (i.e. mod) , what do I need to do to make the function return three (3) seperate objects (i.e. Predictions, Coefficients, and T-values)?
I am fairly new to R, really new to functions, and extreemly new to zoo, and I'm stuck.
Any assistance would be greatly appreciated.
I hope I got you correctly, but here is a small edit of your function:
To see how it works, make a small example with a regression:
As you can see, calling
summary
first and then getting the coefficients of it (coef(summary(reg))
works as well) gives you a table with estimates, standard errors, and t-values. So estimates are saved in column 1 of that table, t-values in column 3. And that's how I obtain them in the updatedrolling.regression
function.EDIT
I updated my solution; now it also contains the adjusted R2. If you just want the normal R2, get rid of the
.adj
.EDIT 2
Quick and dirty hack how to name the columns: