So I built some time ago a little Breakout clone, and I wanted to upgrade it a little bit, mostly for the collisions. When I first made it I had a basic "collision" detection between my ball and my brick, which in fact considered the ball as another rectangle. But this created an issue with the edge collisions, so I thought I would change it. The thing is, I found some answers to my problem:
for example this image
and the last comment of this thread : circle/rect collision reaction but i could not find how to compute the final velocity vector.
So far I have :
- Found the closest point on the rectangle,
- created the normal and tangent vectors,
And now what I need is to somehow "divide the velocity vector into a normal component and a tangent component; negate the normal component and add the normal and tangent components to get the new Velocity vector" I'm sorry if this seems terribly easy but I could not get my mind around that ... code :
function collision(rect, circle){
var NearestX = Max(rect.x, Min(circle.pos.x, rect.x + rect.w));
var NearestY = Max(rect.y, Min(circle.pos.y, rect.y + rect.w));
var dist = createVector(circle.pos.x - NearestX, circle.pos.y - NearestY);
var dnormal = createVector(- dist.y, dist.x);
//change current circle vel according to the collision response
}
Thanks !
EDIT: Also found this but I didn't know if it is applicable at all points of the rectangle or only the corners.
Best explained with a couple of diagrams:
Have angle of incidence = angle of reflection. Call this value θ.
Have θ = normal angle - incoming angle.
atan2 is the function for computing the angle of a vector from the positive x-axis.
Then the code below immediately follows:
Another way of doing it is to get the velocity along the tangent and then subtracting twice this value from the circle velocity.
Then the code becomes
Both of the code snippets above do basically the same thing in about the same time (probably). Just pick whichever one you best understand.
Also, as @arbuthnott pointed out, there's a copy-paste error in that
NearestY
should userect.h
instead ofrect.w
.Edit: I forgot the positional resolution. This is the process of moving two physics objects apart so that they're no longer intersecting. In this case, since the block is static, we only need to move the ball.
Bat and Ball collision
The best way to handle ball and rectangle collision is to exploit the symmetry of the system.
Ball as a point.
First the ball, it has a radius
r
that defines all the pointsr
distance from the center. But we can turn the ball into a point and add to the rectangle the radius. The ball is now just a single point moving over time, which is a line.The rectangle has grown on all sides by radius. The diagram shows how this works.
The green rectangle is the original rectangle. The balls A,B are not touching the rectangle, while the balls C,D are touching. The balls A,D represent a special case, but is easy to solve as you will see.
All motion as a line.
So now we have a larger rectangle and a ball as a point moving over time (a line), but the rectangle is also moving, which means over time the edges will sweep out areas which is too complicated for my brain, so once again we can use symmetry, this time in relative movement.
From the bat's point of view it is stationary while the ball is moving, and from the ball, it is still while the bat is moving. They both see each other move in the opposite directions.
As the ball is now a point, making changes to its movement will only change the line it travels along. So we can now fix the bat in space and subtract its movement from the ball. And as the bat is now fixed we can move its center point to the origin, (0,0) and move the ball in the opposite direction.
At this point we make an important assumption. The ball and bat are always in a state that they are not touching, when we move the ball and/or bat then they may touch. If they do make contact we calculate a new trajectory so that they are not touching.
Two possible collisions
There are now two possible collision cases, one where the ball hits the side of the bat, and one where the ball hits the corner of the bat.
The next images show the bat at the origin and the ball relative to the bat in both motion and position. It is travelling along the red line from A to B then bounces off to C
Ball hits edge
Ball hits corner
As there is symmetry here as well which side or corner is hit does not make any difference. In fact we can mirror the whole problem depending on which size the ball is from the center of the bat. So if the ball is left of the bat then mirror its position and motion in the x direction, and the same for the y direction (you must keep track of this mirror via a semaphore so you can reverse it once the solution is found).
Code
The example does what is described above in the function
doBatBall(bat, ball)
The ball has some gravity and will bounce off of the sides of the canvas. The bat is moved via the mouse. The bats movement will be transferred to the ball, but the bat will not feel any force from the ball.Flaws with this method.
It is possible to trap the ball with the bat such that there is no valid solution, such as pressing the ball down onto the bottom of the screen. At some point the balls diameter is greater than the space between the wall and the bat. When this happens the solution will fail and the ball will pass through the bat.
In the demo there is every effort made to not loss energy, but over time floating point errors will accumulate, this can lead to a loss of energy if the sim is run without some input.
As the bat has infinite momentum it is easy to transfer a lot of energy to the ball, to prevent the ball accumulating to much momentum I have added a max speed to the ball. if the ball moves quicker than the max speed it is gradually slowed down until at or under the max speed.
On occasion if you move the bat away from the ball at the same speed, the extra acceleration due to gravity can result in the ball not being pushed away from the bat correctly.