I have created and trained a neural network but I would like to be able to input test points and see its results (rather than using an eval function).
The model runs fine and the cost reduces every epoch, but I just want to add a line at the end to pass some input coordinates and have it tell me the predicted transformed coordinates.
import tensorflow as tf
import numpy as np
def coordinate_transform(size, angle):
input = np.random.rand(size, 2)
output = np.zeros((size, 2))
noise = 0.05*(np.add(np.random.rand(size) * 2, -1))
theta = np.add(np.add(np.arctan(input[:,1] / input[:,0]) , angle) , noise)
radii = np.sqrt(np.square(input[:,0]) + np.square(input[:,1]))
output[:,0] = np.multiply(radii, np.cos(theta))
output[:,1] = np.multiply(radii, np.sin(theta))
return input, output
#Data
input, output = coordinate_transform(2000, np.pi/2)
train_in = input[:1000]
train_out = output[:1000]
test_in = input[1000:]
test_out = output[1000:]
# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 1
display_step = 1
# Network Parameters
n_hidden_1 = 100 # 1st layer number of features
n_input = 2 # [x,y]
n_classes = 2 # output x,y coords
# tf Graph input
x = tf.placeholder("float", [1,n_input])
y = tf.placeholder("float", [1, n_input])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Output layer with linear activation
out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
#cost = tf.losses.mean_squared_error(0, (tf.slice(pred, 0, 1) - x)**2 + (tf.slice(pred, 1, 1) - y)**2)
cost = tf.losses.mean_squared_error(y, pred)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
optimizer = optimizer.minimize(cost)
# Initializing the variables
#init = tf.global_variables_initializer()
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = 1000#int(len(train_in)/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x = train_in[i].reshape((1,2))
batch_y = train_out[i].reshape((1,2))
#print(batch_x.shape)
#print(batch_y.shape)
#print(batch_y, batch_x)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#Make predictions
Well the 'pred' op is your actual outcome (as it's used to compare with y when calculating the loss), so something like the following should do the trick:
Obviously _INPUT_GOES_HERE_ will need to be replaced by the actual input.
You can also use the tensorflow.python.saved_model libs to save your model in a format that can be served by TensorFlow Serving.
TensorFlow Serving recently became a whole lot easier to install and setup:
https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/setup.md#installing-using-apt-get
Below is some sample code (you'll need to adjust the feeds/inputs and fetches/outputs for your use case).
Create SignatureDef for your model:
Using SaveModelBuilder to save your model with the SignatureDef assets defined above:
More details in the github and docker repos referenced here: http://pipeline.ai