I have got a dataframe like this:
import pandas as pd
data = {
'c1': ['Test1','Test2','NULL','Test3',' ','Test4','Test4','Test1',"Test3"],
'c2': [' ','Test1',' ','NULL',' ','NULL','NULL','NULL','NULL'],
'c3': [0,0,0,0,0,1,5,0,0],
'c4': ['NULL', 'Test2', 'Test1','Test1', 'Test2', 'Test2','Test1','Test1','Test2']
}
df = pd.DataFrame(data)
df
The dataframe looks like this:
c1 c2 c3 c4
0 Test1 0 NULL
1 Test2 Test1 0 Test2
2 NULL 0 Test1
3 Test3 NULL 0 Test1
4 0 Test2
5 Test4 NULL 1 Test2
6 Test4 NULL 5 Test1
7 Test1 NULL 0 Test1
8 Test3 NULL 0 Test2
I want to drop all columns, that have more than 60 % of "empty" values. "Empty" means in my case that the values are for example: ' ', 'NULL' or 0. There are strings (c1, c2, c4) as well as integers (c3).
The result should be a dataframe with columns c1 and c4 only.
c1 c4
0 Test1 NULL
1 Test2 Test2
2 NULL Test1
3 Test3 Test1
4 Test2
5 Test4 Test2
6 Test4 Test1
7 Test1 Test1
8 Test3 Test2
I have no idea how to handle that problem. Only thing that comes to my mind is something like
df.loc[:, (df != 0).any(axis=0)]
to delete all columns where all values are 0, 'NULL' and so on.
you can drop the columns using dropna
thresh
parameter:Use
DataFrame.isin
for check all formats and then getmean
for treshold and filter byboolean indexing
withloc
: